Comptes Rendus
Splitting of dissolving precipitates during plastic shear: A phase field study
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 353-370.

Using a phase field model, we have investigated the role of plasticity on the morphological evolution of a precipitate during its diffusion-controlled dissolution, when submitted to shear loading. It is shown that the plastic strain pattern in the matrix strongly influences the local dissolution rate and consequently the final shape of the precipitate. Finally, it is demonstrated that for sufficiently fast and intense shear loadings, plasticity can induce splitting of the precipitate: this process could explain why small precipitates are observed in shear bands in Ti alloys forged parts.

Online First:
Published online:
DOI: 10.5802/crphys.82
Keywords: Phase field, Plasticity, Morphology, Shape bifurcation, Dissolution, Titanium alloys
Kais Ammar 1; Benoît Appolaire 2, 3; Samuel Forest 1

1 MINES ParisTech, PSL University, Centre des matériaux (CMAT), CNRS UMR 7633, BP 87 91003 Evry, France.
2 Université de Lorraine, Institut Jean Lamour, Nancy, France
3 Labex DAMAS, Université de Lorraine, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Kais Ammar and Beno{\^\i}t Appolaire and Samuel Forest},
     title = {Splitting of dissolving precipitates during plastic shear: {A} phase field study},
     journal = {Comptes Rendus. Physique},
     pages = {353--370},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.82},
     language = {en},
AU  - Kais Ammar
AU  - Benoît Appolaire
AU  - Samuel Forest
TI  - Splitting of dissolving precipitates during plastic shear: A phase field study
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 353
EP  - 370
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.82
LA  - en
ID  - CRPHYS_2021__22_S3_353_0
ER  - 
%0 Journal Article
%A Kais Ammar
%A Benoît Appolaire
%A Samuel Forest
%T Splitting of dissolving precipitates during plastic shear: A phase field study
%J Comptes Rendus. Physique
%D 2021
%P 353-370
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.82
%G en
%F CRPHYS_2021__22_S3_353_0
Kais Ammar; Benoît Appolaire; Samuel Forest. Splitting of dissolving precipitates during plastic shear: A phase field study. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 353-370. doi : 10.5802/crphys.82.

[1] Kais Ammar; Benoît Appolaire; Georges Cailletaud; F. Feyel; Samuel Forest Finite element formulation of a phase field model based on the concept of generalized stresses, Comput. Mater. Sci., Volume 45 (2009) no. 3, pp. 800-805 | DOI

[2] Kais Ammar; Benoît Appolaire; Georges Cailletaud; Samuel Forest Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech., Volume 18 (2009) no. 5-6, pp. 485-523 | DOI | Zbl

[3] Kais Ammar; Benoît Appolaire; Georges Cailletaud; Samuel Forest Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate, Philos. Mag. Lett., Volume 91 (2011) no. 3, pp. 164-172 | DOI

[4] Kais Ammar; Benoît Appolaire; Samuel Forest; Maeva Cottura; Yann Le Bouar; Alphonse Finel Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method, Meccanica, Volume 49 (2014), pp. 2699-2717 | DOI | MR | Zbl

[5] Anup Basak; Valery I. Levitas Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses, Comput. Methods Appl. Mech. Eng., Volume 343 (2019), pp. 368-406 | DOI | MR | Zbl

[6] John W. Cahn; Francis Larché A simple model for coherent equilibrium, Acta Metallurgica, Volume 32 (1984) no. 11, pp. 1915-1923 | DOI

[7] Jean-Louis Chaboche; Serge Kruch; Jean-François Maire; Thibaud Pottier Towards a micromechanics based inelastic and damage modeling of composites, Int. J. Plast., Volume 17 (2001), pp. 411-439 | DOI

[8] Tian-Le Cheng; You-Hai Wen; Jeffrey A. Hawk Modeling elasto-viscoplasticity in a consistent phase field framework, Int. J. Plast., Volume 96 (2017), pp. 242-263 | DOI

[9] Maeva Cottura; Benoît Appolaire; Alphonse Finel; Yann Le Bouar Phase field study of acicular growth: Role of elasticity in Widmanstätten structure, Acta Mater., Volume 72 (2014), pp. 200-210 | DOI

[10] Maeva Cottura; Benoît Appolaire; Alphonse Finel; Yann Le Bouar Plastic relaxation during diffusion-controlled growth of Widmanstätten plates, Scr. Mater., Volume 108 (2015), pp. 117-121 | DOI

[11] Maeva Cottura; Benoît Appolaire; Alphonse Finel; Yann Le Bouar Coupling the Phase Field Method for diffusive transformations with dislocation density-based crystal plasticity: Application to Ni-based superalloys, J. Mech. Phys. Solids, Volume 94 (2016), pp. 473-489 | DOI | MR

[12] Maeva Cottura; Benoît Appolaire; Alphonse Finel; Yann Le Bouar Microstructure evolution under [110] creep in Ni-base superalloys, Acta Mater., Volume 212 (2021), 116851 | DOI

[13] Maeva Cottura; Yann Le Bouar; Benoît Appolaire; Alphonse Finel Rôle of elastic inhomogeneity in the development of cuboidal microstructures in Ni-based superalloys, Acta Mater., Volume 94 (2015), pp. 15-25 | DOI

[14] École des Mines ParisTech (France) and Onera – the French Aerospace Lab Z-set package: Non-linear material & structure analysis suite, 2013 (

[15] E. S. Fisher; C. J. Renken Single-crystal elastic moduli and the hcp bcc transformation in Ti, Zr, and Hf, Phys. Rev., Volume 135 (1964) no. 2A, pp. 482-494 | DOI

[16] Eliot Fried; Morton E. Gurtin A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy, Phys. D, Volume 91 (1996) no. 1-2, pp. 143-181 | DOI | MR | Zbl

[17] Anais Gaubert; Yann Le Bouar; Alphonse Finel Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, Philos. Mag., Volume 90 (2010) no. 1-4, pp. 7-28 | DOI

[18] Johan Hektor; Matti Ristinmaa; Håkan Hallberg; Stephen A. Hall; Srinivasan Iyengar Coupled diffusion-deformation multiphase field model for elastoplastic materials applied to the growth of Cu 6 Sn 5 , Acta Mater., Volume 108 (2016), pp. 98-109 | DOI

[19] Christoph Hermann; Ephraim Schoof; Daniel Schneider; Felix Schwab; Andreas Reiter; Michael Selzer; Nestler Britta Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions, Comput. Mech., Volume 62 (2018), pp. 1399-1412 | DOI

[20] William C. Johnson; J. Iwan D. Alexander Interfacial conditions for thermomechanical equilibrium in two-phase crystals, J. Appl. Phys., Volume 59 (1986) no. 8, pp. 2735-2746 | DOI

[21] Francis Larché; John W. Cahn A linear theory of thermochemical equilibrium of solids under stress, Acta Metallurgica, Volume 21 (1973) no. 8, pp. 1051-1063 | DOI

[22] Yann Le Bouar; A. Loiseau; Alphonse Finel Origin of the complex wetting behavior in Co-Pt alloys, Phys. Rev. B, Volume 68 (2003), 224203 | Zbl

[23] Hervé Moulinec; Pierre Suquet Intraphase strain heterogeneity in nonlinear composites: a computational approach, Eur. J. Mech., A, Solids, Volume 22 (2003), pp. 751-770 | DOI

[24] Victor de Rancourt; Kais Ammar; Benoît Appolaire; Samuel Forest Homogenization of viscoplastic constitutive laws within a phase field approach, J. Mech. Phys. Solids, Volume 88 (2016), pp. 291-319 | DOI

[25] Daniel Schneider; Stefan Schmid; Michael Selzer; Thomas Böhlke; Britta Nestler Small strain elasto-plastic multiphase-field model, Comput. Mech., Volume 55 (2014), pp. 27-35 | DOI

[26] S. L. Semiatin; S. L. Knisley; P. N. Fagin; F. Zhang; D. R. Barker Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans., Volume 34 (2003), pp. 2377-2386 | DOI

[27] M. E. Thompson; C. S. Su; Peter W. Voorhees The equilibrium shape of a misfitting precipitate, Acta Metallurgica and Materialia, Volume 42 (1994) no. 6, pp. 2107-2122 | DOI

[28] Aurélien Vattré; Christophe Denoual Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations, J. Mech. Phys. Solids, Volume 92 (2016), pp. 1-27 | DOI

[29] Peter W. Voorhees; William C. Johnson The Thermodynamics of Elastically Stressed Crystals (Henry Ehrenreich; Frans Spaepen, eds.) (Solid State Physics), Volume 59, Elsevier, 2004, pp. 1-201 | DOI

[30] Peter W. Voorhees; Goeffrey B. McFadden; Ronald F. Boisvert; Daniel I. Meiron Numerical simulation of morphological development during Ostwald ripening, Acta Metallurgica, Volume 36 (1988) no. 1, pp. 207-222 | DOI

Cited by Sources:

Comments - Policy

Articles of potential interest

Foreword: Plasticity and Solid State Physics

Samuel Forest; David Rodney

C. R. Phys (2021)

Phase field methods: Microstructures, mechanical properties and complexity

Alphonse Finel; Y. Le Bouar; A. Gaubert; ...

C. R. Phys (2010)

Study of diffusive transformations by high energy X-ray diffraction

G. Geandier; E. Aeby-Gautier; A. Settefrati; ...

C. R. Phys (2012)