There is currently a growing interest in the development of communication systems that consume as little energy as possible, with the idea of eliminating the presence of batteries, which are a very polluting component. This is why the principles of communication based on backscatter modulation, or even more simply on backscattering by a device that takes the form of a label, like a barcode, are being studied more and more. In the latter case, the idea is to use the radar signature of this totally passive label, the geometry of the elements printed on it having been specially designed to perform the desired functions. These new systems cannot claim to do the same things as those working with a power supply or a chip, but they may be of interest for certain applications where the reading distances do not exceed one metre. Compared to barcodes, the main advantages are related to the use of RF waves to communicate, which makes it possible to read through certain objects that are opaque to light, or to significantly reduce the acquisition time of identifiers by being able to scan larger reading areas more easily.
Il existe actuellement un intérêt croissant pour le développement de systèmes de communication consommant le moins d’énergie possible, avec l’idée d’éliminer la présence de batteries, qui sont des composants très polluants. C’est pourquoi on étudie de plus en plus les principes de communication RF basés sur la retro-modulation, ou même plus simplement sur la rétrodiffusion d’une onde par un dispositif qui prend la forme d’une étiquette, comme un code-barres. Dans ce dernier cas, il s’agit d’utiliser la signature radar de cette étiquette totalement passive ; la géométrie des éléments imprimés sur celle-ci ayant été spécialement conçue pour remplir les fonctions souhaitées. Ces nouveaux systèmes ne peuvent prétendre faire les mêmes choses que ceux fonctionnant avec une alimentation ou une puce, mais ils peuvent être intéressants pour certaines applications où les distances de lecture ne dépassent pas un mètre. Par rapport aux code-barres, les principaux avantages sont liés à l’utilisation des ondes RF pour communiquer, ce qui permet de lire à travers certains objets opaques à la lumière ou encore de réduire significativement le temps d’acquisition des identifiants en pouvant balayer plus facilement de plus grandes zones de lecture.
Published online:
Mot clés : Identification par radiofréquence (RFID) sans puce, Communication par rétrodiffusion, Étiquettes-capteurs, Extraction de paramètres indépendante de l’orientation, Surface équivalente radar (SER), Diffuseur RF
Etienne Perret 1, 2
@article{CRPHYS_2021__22_S5_51_0, author = {Etienne Perret}, title = {Chipless labels detection by backscattering for identification and sensing applications}, journal = {Comptes Rendus. Physique}, pages = {51--71}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S5}, year = {2021}, doi = {10.5802/crphys.95}, language = {en}, }
Etienne Perret. Chipless labels detection by backscattering for identification and sensing applications. Comptes Rendus. Physique, Volume 22 (2021) no. S5, pp. 51-71. doi : 10.5802/crphys.95. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.95/
[1] Les étiquettes RFID, 2004 (http://cerig.efpg.inpg.fr/memoire/2004/rfid.htm#code_barres)
[2] Leon Theremin (Lev Termen), IEEE Antennas Propag. Mag., Volume 54 (2012) no. 5, pp. 252-257 | DOI
[3] Radio Frequency Identification and Sensors: From RFID to Chipless RFID, Wiley, Hoboken, NJ, USA, 2014 (London, UK: ISTE)
[4] Chipless RFID: Bar code of the future, IEEE Microw. Mag., Volume 11 (2010) no. 7, pp. 87-97 | DOI
[5] Hold the chips: Chipless technology, an alternative technique for RFID, IEEE Microw. Mag., Volume 14 (2013) no. 5, pp. 56-65 | DOI
[6] RCS Synthesis for Chipless RFID: Theory and Design, ISTE Press, London, UK, 2017 (Oxford, UK: Elsevier)
[7] Chipless RFID Based on RF Encoding Particle — Realization, Coding and Reading System, ISTE, London, UK, 2016 (Oxford, UK: Elsevier)
[8] Design of compact and auto compensated single layer chipless RFID tag, IEEE Trans. Microw. Theory Tech., Volume 60 (2012) no. 9, pp. 2913-2924 | DOI
[9] Chipless RFID tag using hybrid coding technique, IEEE Trans. Microw. Theory Tech., Volume 59 (2011) no. 12, pp. 3356-3364 | DOI
[10] Contactless characterization of coplanar stripline discontinuities by RCS measurement, IEEE Trans. Antennas Propag., Volume 65 (2017) no. 1, pp. 251-257 | DOI
[11] Permittivity characterization based on Radar Cross measurements, International Symposium Electromagnetic Theory (EMTS 2016), URSI, Finland (2016) (Invated paper) | DOI
[12] Contactless characterization of metals’ thermal expansion coefficient by a free-space RF measurement, IEEE Trans. Antennas Propag., Volume 69 (2021) no. 2, pp. 1230-1234 | DOI
[13] RCS magnitude coding for chipless RFID based on depolarizing tag, IEEE MTT-S International Microwave Symposium Digest, Phoenix, USA (2015) | DOI
[14] A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 8, pp. 2982-2994 | DOI
[15] A fully printable chipless RFID tag with detuning correction technique, IEEE Microw. Wirel. Compon. Lett., Volume 22 (2012) no. 4, pp. 209-211 | DOI
[16] Design of compact and auto compensated single layer chipless RFID tag, IEEE Trans. Microw. Theory Tech., Volume 60 (2012) no. 9, pp. 2913-2924 | DOI
[17] Temporal separation detection for chipless depolarizing frequency-coded RFID, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 7, pp. 2326-2337 | DOI
[18] High capacity chipless RFID tag insensitive to the polarization, IEEE Trans. Antennas Propag., Volume 60 (2012) no. 10, pp. 4509-4515 | DOI
[19] Chipless RFID reading method insensitive to tag orientation, IEEE Trans. Antennas Propag., Volume 69 (2021) no. 5, pp. 2896-2902 | DOI
[20] Angle sensor based on chipless RFID tag, IEEE Antennas Wirel. Propag. Lett., Volume 19 (2020) no. 2, pp. 233-237 | DOI
[21] Cross-polarization chipless tag for orientation sensing, 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands (2021), pp. 1119-1122 | DOI
[22] Design of antennas for UHF RFID tags, Proc. IEEE, Volume 100 (2012) no. 7, pp. 2330-2340 | DOI
[23] Design of chipless RFID tags printed on paper by flexography, Antennas Propag., IEEE Trans., Volume 61 (2013) no. 12, pp. 5868-5877 | DOI
[24] Design of chipless RFID tags printed on paper by flexography, IEEE Trans. Antennas Propag., Volume 61 (2013) no. 12, pp. 5868-5877 | DOI
[25] Metallic letter identification based on radar approach, General Assembly and Scientific Symposium, 2011 XXXth URSI, Istanbul, Turkey (2011), pp. 1-4 | DOI
[26] Electronically rewritable chipless RFID tags fabricated through thermal transfer printing on flexible PET substrates, IEEE Trans. Antennas Propag., Volume 69 (2021) no. 4, pp. 1908-1921 | DOI
[27] Thermal modeling of resonant scatterers and reflectometry approach for remote temperature sensing, IEEE Trans. Microw. Theory Tech., Volume 69 (2021) no. 11, pp. 4720-4734 | DOI
[28] Toward a reliable chipless RFID humidity sensor tag based on silicon nanowires, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 9, pp. 2977-2985 | DOI
[29] Gesture recognition with the chipless RIFD technology, URSI General Assembly and Scientific Symposium (GASS), Montreal, QC, Canada, 19–26 August 2017 (2017) | DOI
[30] Chipless RFID label with identification and touch-sensing capabilities, Sensors, Volume 21 (2021) no. 14, 4862 | DOI
[31] https://www.scattererid.eu/ (ERC Agreement 772539. Accessed: Fev. 07, 2022. [Online])
, 2022[32] A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 8, pp. 2982-2994 | DOI
[33] Design of planar resonant scatterer with roll-invariant cross polarization, IEEE Trans. Microw. Theory Tech., Volume 68 (2020) no. 10, pp. 4305-4313 | DOI
[34] Extraction of aspect-independent parameters using spectrogram method for chipless frequency-coded RFID, IEEE Sensors J., Volume 21 (2021) no. 5, pp. 6530-6542 | DOI
[35] Displacement sensor based on radar cross-polarization measurements, IEEE Trans. Microw. Theory Tech., Volume 65 (2017) no. 3, pp. 955-966 | DOI
[36] Micrometric displacement sensor based on chipless RFID, IEEE MTT-S International Microwave Symposium (IMS2017), Honolulu, Hawaii, United States (2017) | DOI
[37] Chipless RFID temperature and humidity sensing, 2021 IEEE MTT-S International Microwave Symposium (IMS) (2021), pp. 545-548 | DOI
[38] Chalcogenide Nanoionic-Based Radio Frequency Switch, April 12, 2013 (US Patent 7 923 715 B2)
[39] Nafion based fully passive solid state conductive bridging RF switch, IEEE Microw. Wirel. Compon. Lett., Volume 27 (2017) no. 12, pp. 1104-1106 | DOI
[40] Electrochemical metallization memories—fundamentals, applications, prospects, Nanotechnology, Volume 22 (2011) no. 25, 254003 | DOI
[41] Realization of a conductive bridging RF switch integrated on to printed circuit board, Prog. Electromagn. Res., Volume 151 (2015), pp. 9-16 | DOI
[42] A fully passive RF switch based on nanometric conductive bridge, IEEE MTT-S International Microwave Symposium (IMS), Montreal, Canada (2012) | DOI
[43] A fully passive RF switch based on nanometric conductive bridge, IEEE MTT-S International Microwave Symposium (IMS), Montreal, Canada (2012) | DOI
[44] Chalcogenide nanoionic-based radio frequency switch, USA, 2010 (US 7 923 715 B2)
[45] Toward a reliable chipless RFID humidity sensor tag based on silicon nanowires, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 9, pp. 2977-2985 | DOI
[46] T Soli: ubiquitous gesture sensing with millimeter wave radar, J. ACM Trans. Graph., Volume 35 (2016) no. 4, pp. 1-19 | DOI
[47] Design of an RFID-based battery-free programmable sensing platform, IEEE Trans. Instrum. Meas., Volume 57 (2008) no. 11, pp. 2608-2615 | DOI
[48] A chipless RFID method of 2D localization based on phase acquisition, J. Sensors, Volume 2018 (2018), 7484265 | DOI
Cited by Sources:
Comments - Policy