Elastomers used in everyday life are always reinforced with rigid nanoparticles (carbon black or silica). The addition of rigid nanoparticles to an elastomer gives it very specific viscoelastic properties. In this article, we discuss the current understanding of mechanical properties of a polymer matrix around its glass transition, focusing on the situation of polymers confined between two rigid surfaces with a nanometric gap. Then, we will explain how the properties of the matrix can help to understand the properties of filled or reinforced elastomers. We will then explain that in reinforced rubbers, the mechanical properties are dominated by stress propagation between neighboring aggregates through a nanometric polymer gap, thus by confined polymer bridges. We will discuss how knowledge of the dynamics of confined polymers allows us to understand the temperature dependence, the pressure dependence and the non-linearities observed for strain below 0.1 of reinforced elastomers.
Les élastomères utilisés dans la vie courante sont toujours renforcés avec des nanoparticules rigides (noir de carbone, ou silice). L’ajout de nanoparticules rigides dans un élastomère leur confère des propriétés mécaniques très spécifiques. Dans cet article, nous rappelons d’abord ce que l’on connait aujourd’hui des propriétés mécaniques d’un élastomère autour de sa transition vitreuse, et en particulier lorsqu’il est confiné entre deux surfaces solides proche de quelques nanomètres. Puis nous expliquerons comment ces propriétés peuvent aider à la compréhension de celles des élastomères renforcés. En effet nous montrons que dans les élastomères renforcés, les propriétés mécaniques sont dominées par la propagation de la contrainte entre nanoparticules par des ponts de polymère confinés. Nous discuterons comment la connaissance de la dynamique des polymères confinés permet de comprendre les effets de température, de pression est les non-linéarités précoces de la mécanique des élastomères renforcés.
Published online:
Mot clés : Transition vitreuse, Physique des polymères, Propriétés mécaniques, Élastomères renforcés, Confinement, Nanoparticules, Pression
Helene Montes 1; Francois Lequeux 1
@article{CRPHYS_2021__22_S5_33_0, author = {Helene Montes and Francois Lequeux}, title = {Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains}, journal = {Comptes Rendus. Physique}, pages = {33--50}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S5}, year = {2021}, doi = {10.5802/crphys.96}, language = {en}, }
TY - JOUR AU - Helene Montes AU - Francois Lequeux TI - Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains JO - Comptes Rendus. Physique PY - 2021 SP - 33 EP - 50 VL - 22 IS - S5 PB - Académie des sciences, Paris DO - 10.5802/crphys.96 LA - en ID - CRPHYS_2021__22_S5_33_0 ER -
%0 Journal Article %A Helene Montes %A Francois Lequeux %T Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains %J Comptes Rendus. Physique %D 2021 %P 33-50 %V 22 %N S5 %I Académie des sciences, Paris %R 10.5802/crphys.96 %G en %F CRPHYS_2021__22_S5_33_0
Helene Montes; Francois Lequeux. Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains. Comptes Rendus. Physique, Volume 22 (2021) no. S5, pp. 33-50. doi : 10.5802/crphys.96. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.96/
[1] Nuclear magnetic resonance study of rubber–carbon black interactions, J. Polym. Sci. B Polym. Phys., Volume 9 (1971), pp. 829-839 | DOI
[2] Evidence for the shift of the glass transition near the particles in silica-filled elastomers, Macromolecules, Volume 35 (2002), pp. 9756-9762 | DOI
[3] Gradient of glass transition temperature in filled elastomers, Europhys. Lett., Volume 64 (2003), pp. 50-56 | DOI
[4] Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry, Phys. Rev. Lett., Volume 108 (2012), 065702 | DOI
[5] The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci., Volume 6 (1962), pp. 57-63 | DOI
[6] Glass transition behavior in ultra-thin polystyrene films, Isr. J. Chem., Volume 35 (1995), pp. 21-26 | DOI
[7] Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness, Macromolecules, Volume 33 (2000), pp. 6439-6447 | DOI
[8] Mechanical and viscoelastic properties of confined amorphous polymers, J. Polym. Sci. B Polym. Phys., Volume 56 (2018), pp. 9-30 | DOI
[9] Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chem. Technol., Volume 71 (1998), pp. 520-589 | DOI
[10] Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior, Macromolecules, Volume 35 (2002), pp. 7262-7273 | DOI
[11] Molecular dynamics simulations of glassy polymers, Soft Matter., Volume 6 (2010), pp. 3430-3446 | DOI
[12] Entanglement reduction induced by geometrical confinement in polymer thin films, Macromolecules, Volume 51 (2018), pp. 9850-9860 | DOI
[13] Local dynamics and primitive path analysis for a model polymer melt near a surface, Macromolecules, Volume 40 (2007), pp. 3797-3804 | DOI
[14] Viscoelastic Properties of Polymers, Wiley, New York, USA, 1980
[15] Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films, Eur. Phys. J. E, Volume 4 (2001), pp. 371-387 | DOI
[16] Physics and Mechanics of Amorphous Polymers, Routledge, London, UK, 1998 | DOI
[17] Shear-transformation-zone theory of plastic deformation near the glass transition, Phys. Rev. E, Volume 77 (2008), 021502 | DOI
[18] Elasticity of polymer networks, Macromolecules, Volume 35 (2002), pp. 6670-6686 | DOI
[19] The Physics of Polymers: Concepts for Understanding Their Structures and Behavior, Springer-Verlag, Berlin, Heidelberg, 2007 (e-books)
[20] 50th anniversary perspective: challenges in the dynamics and kinetics of glass-forming polymers, Macromolecules, Volume 50 (2017), pp. 6333-6361 | DOI
[21] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI
[22] Heterogeneous dynamics at the glass transition in van der Waals liquids: Determination of the characteristic scale, Eur. Phys. J. E, Volume 9 (2002), pp. 195-206 | DOI
[23] et al. Heterogeneous dynamics and polymer plasticity, Macromolecules, Volume 49 (2016), pp. 9148-9162 | DOI
[24] Modeling the mechanics of amorphous polymer in the glass transition, Mechanics and Physics of Solids at Micro- and Nano-Scales (I. R. Ionescu; S. Queyreau; C. R. Picu; O. U. Salman, eds.), Wiley, London, UK, 2019, pp. 231-262 (Ch. 9) | DOI
[25] et al. Role of dynamical heterogeneities on the viscoelastic spectrum of polymers: a stochastic continuum mechanics model, Macromolecules, Volume 48 (2015), pp. 6690-6702 | DOI
[26] Deformation-induced mobility in polymer glasses during multistep creep experiments and simulations, Macromolecules, Volume 42 (2009), pp. 4328-4336 | DOI
[27] Dynamics in glassy polymers: The Eyring model revisited, Phys. Rev. Mater., Volume 2 (2018), 105601 | DOI
[28] Weak nonlinearities in viscoelastic mechanical properties of polymers near their glass transition: Local versus macroscopic laws for stress-induced acceleration of the mechanical response, Phys. Rev. Mater., Volume 5 (2021), 033601 | DOI
[29] Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations, Eur. Phys. J. E, Volume 35 (2012), 61 | DOI
[30] et al. Role of dynamical heterogeneities on the mechanical response of confined polymer, Phys. Rev. Lett., Volume 118 (2017), 047801 | DOI
[31] et al. Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites, Macromolecules, Volume 47 (2014), pp. 1837-1843 | DOI
[32] Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy, Macromol. Mater. Eng., Volume 293 (2008), pp. 12-38 | DOI
[33] Particles in model filled rubber: Dispersion and mechanical properties, Eur. Phys. J. E, Volume 31 (2010), pp. 263-268 | DOI
[34] et al. Role of glassy bridges on the mechanics of filled rubbers under pressure, Macromolecules, Volume 53 (2020), pp. 3728-3737 | DOI
[35] The payne effect for particle-reinforced elastomers, Polym. Eng. Sci., Volume 42 (2002), pp. 591-604 | DOI
[36] Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers, Macromolecules, Volume 36 (2003), pp. 8107-8118 | DOI
Cited by Sources:
Comments - Policy