[Dynamique des fluides d’un système mixte convectif / stablement stratifié — Une revue de quelques travaux récents]
De nombreux systèmes fluides s’organisent en une couche turbulente adjacente à une couche stratifiée stable, comme par exemple les atmosphères planétaires et les intérieurs stellaires. La compréhension des échanges d’énergie et de quantité de mouvement à l’interface entre ces deux couches, et l’appréhension de leur dynamique couplée sont difficiles, en raison de la grande gamme d’échelles de temps et de longueur impliquées : en effet, la turbulence rapide à petite échelle excite des ondes à moyenne échelle, qui se propagent et interagissent non linéairement pour générer des circulations à grande échelle, dont le plus célèbre exemple est l’oscillation quasibiennale de l’atmosphère terrestre. Dans cet article, nous passons en revue quelques progrès récents sur la caractérisation des ondes et sur la génération non-linéaire d’un écoulement moyen, obtenus par l’étude combinée, expérimentale et numérique, d’une configuration modèle au laboratoire. Les conséquences possibles de nos résultats pour la modélisation climatique et stellaire sont aussi brièvement discutées.
Numerous fluid systems organise into a turbulent layer adjacent to a stably stratified one, for instance, planetary atmospheres and stellar interiors. Capturing the coupled dynamics of such systems and understanding the exchanges of energy and momentum at the interface between the two layers are challenging, because of the large range of involved time- and length-scales: indeed, the rapid small-scale turbulence excites waves at intermediate scale, which propagate and interact non-linearly to generate large-scale circulations, whose most famous example is the quasi-biennial oscillation of the Earth’s atmosphere. We review here some recent progress on the wave characterisation and on the non-linear mean flow generation, based on the combined experimental and numerical study of a model laboratory system. Applications in climate and stellar modelling are also briefly discussed.
Keywords: Internal gravity waves, Convection, Wave—mean flow interactions, Quasi-biennial oscillation (QBO), Atmospheric and stellar dynamics
Mot clés : Ondes internes de gravité, Convection, Interactions ondes — écoulemement moyen, Oscillation quasi-biennale, Dynamique atmosphérique et stellaire
Michael Le Bars 1 ; Louis-Alexandre Couston 1 ; Benjamin Favier 1 ; Pierre Léard 1 ; Daniel Lecoanet 2 ; Patrice Le Gal 1
@article{CRPHYS_2020__21_2_151_0, author = {Michael Le Bars and Louis-Alexandre Couston and Benjamin Favier and Pierre L\'eard and Daniel Lecoanet and Patrice Le Gal}, title = {Fluid dynamics of a mixed convective/stably stratified {system{\textemdash}A} review of some recent works}, journal = {Comptes Rendus. Physique}, pages = {151--164}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {2}, year = {2020}, doi = {10.5802/crphys.17}, language = {en}, }
TY - JOUR AU - Michael Le Bars AU - Louis-Alexandre Couston AU - Benjamin Favier AU - Pierre Léard AU - Daniel Lecoanet AU - Patrice Le Gal TI - Fluid dynamics of a mixed convective/stably stratified system—A review of some recent works JO - Comptes Rendus. Physique PY - 2020 SP - 151 EP - 164 VL - 21 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crphys.17 LA - en ID - CRPHYS_2020__21_2_151_0 ER -
%0 Journal Article %A Michael Le Bars %A Louis-Alexandre Couston %A Benjamin Favier %A Pierre Léard %A Daniel Lecoanet %A Patrice Le Gal %T Fluid dynamics of a mixed convective/stably stratified system—A review of some recent works %J Comptes Rendus. Physique %D 2020 %P 151-164 %V 21 %N 2 %I Académie des sciences, Paris %R 10.5802/crphys.17 %G en %F CRPHYS_2020__21_2_151_0
Michael Le Bars; Louis-Alexandre Couston; Benjamin Favier; Pierre Léard; Daniel Lecoanet; Patrice Le Gal. Fluid dynamics of a mixed convective/stably stratified system—A review of some recent works. Comptes Rendus. Physique, Volume 21 (2020) no. 2, pp. 151-164. doi : 10.5802/crphys.17. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.17/
[1] Internal Gravity Waves, Cambridge University Press, Cambridge, UK, 2010 | DOI | Zbl
[2] Asteroseismology, Springer Science & Business Media, Netherlands, 2010
[3] Internal gravity waves modulate the apparent misalignment of exoplanets around hot stars, Astrophys. J. Lett., Volume 758 (2012) no. 1, p. L6 | DOI
[4] et al. The quasi-biennial oscillation, Rev. Geophys., Volume 39 (2001) no. 2, pp. 179-229 | DOI
[5] The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere, Nature, Volume 354 (1991) no. 6352, p. 380 | DOI
[6] An equatorial oscillation in Saturn’s middle atmosphere, Nature, Volume 453 (2008) no. 7192, p. 200 | DOI
[7] A theory of the quasi-biennial oscillation, J. Atmos. Sci., Volume 25 (1968) no. 6, pp. 1095-1107 | DOI
[8] An updated theory for the quasi-biennial cycle of the tropical stratosphere, J. Atmos. Sci., Volume 29 (1972) no. 6, pp. 1076-1080 | DOI
[9] The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation, J. Atmos. Sci., Volume 34 (1977) no. 12, pp. 1847-1858 | DOI
[10] Periodicity disruption of a model quasibiennial oscillation of equatorial winds, Phys. Rev. Lett., Volume 122 (2019) no. 21, 214504 | DOI
[11] The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation, J. Atmos. Sci., Volume 35 (1978) no. 10, pp. 1827-1839 | DOI | MR
[12] Nonlinear saturation of the large scale flow in a laboratory model of the quasibiennial oscillation, Phys. Rev. Lett., Volume 121 (2018) no. 13, 134502 | DOI
[13] A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere, J. Geophys. Res., Volume 118 (2013) no. 16, pp. 8897-8909 | DOI
[14] et al. Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., Volume 11 (2018) no. 3, pp. 1009-1032 | DOI
[15] et al. Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative, Q. J. R. Meteorol. Soc. (2020), pp. 1-31 | DOI
[16] Experimental study of internal wave generation by convection in water, Fluid Dyn. Res., Volume 47 (2015) no. 4, 045502
[17] Numerical simulations of internal wave generation by convection in water, Phys. Rev. E, Volume 91 (2015) no. 6, 063016 | DOI
[18] Dynamics of mixed convective–stably-stratified fluids, Phys. Rev. Fluids, Volume 2 (2017) no. 9, 094804
[19] Order out of chaos: slowly reversing mean flows emerge from turbulently generated internal waves, Phys. Rev. Lett., Volume 120 (2018) no. 24, 244505
[20] The energy flux spectrum of internal waves generated by turbulent convection, J. Fluid Mech., Volume 854 (2018), R3 | MR | Zbl
[21] Coupled convection and internal gravity waves excited in water around its density maximum at 4 C, Phys. Rev. Fluids, Volume 5 (2020) no. 2, 024801 | DOI
[22] Internal gravity waves generated by convective plumes, J. Fluid Mech., Volume 648 (2010), pp. 405-434 | DOI | MR | Zbl
[23] Laboratory investigation of non-steady penetrative convection, J. Fluid Mech., Volume 35 (1969) no. 1, pp. 7-31 | DOI
[24] The coupling between turbulent, penetrative convection and internal waves, Eur. J. Mech. B, Volume 21 (2002) no. 1, pp. 1-28 | DOI | Zbl
[25] Natural convection in water over an ice surface, Q. J. R. Meteorol. Soc., Volume 90 (1964) no. 385, pp. 248-259 | DOI
[26] Experimental and numerical investigation of internal gravity waves excited by turbulent penetrative convection in water around its density maximum, Studying Stellar Rotation and Convection, Springer, Berlin, Heidelberg, Germany, 2013, pp. 239-257 | DOI
[27] Convection at high Rayleigh number, Applied Mechanics, Springer, New York, USA, 1966, pp. 1109-1115 | DOI
[28] Dedalus: A flexible framework for numerical simulations with spectral methods, Phys. Rev. Res., Volume 2 (2020) no. 2, 023068
[29]
“Nek5000 v17.0”, http://nek5000.mcs.anl.gov (2017)[30] Low-frequency variability in massive stars: Core generation or surface phenomenon?, Astrophys. J. Lett., Volume 886 (2019) no. 1, p. L15 | DOI
[31] Waves in Fluids, Cambridge University Press, Cambridge, UK, 2001
[32] Wave generation by turbulent convection, Astrophys. J., Volume 363 (1990) no. 2, pp. 694-704 | DOI
[33] Internal gravity wave excitation by turbulent convection, Mon. Not. R. Astron. Soc., Volume 430 (2013) no. 3, pp. 2363-2376 | DOI
[34] et al. Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry, Nat. Astron., Volume 3 (2019) no. 8, pp. 760-765 | DOI
[35] Three-dimensional simulations of massive stars. I. Wave generation and propagation, Astrophys. J., Volume 876 (2019) no. 1, p. 4 | DOI
[36] preprint, arXiv:1912.12653 (2019)
“What physics is missing in theoretical models of high-mass stars: new insights from asteroseismology”,[37] et al. ICON-A, the atmosphere component of the ICON earth system model: II. Model evaluation, J. Adv. Model. Earth Syst., Volume 10 (2018) no. 7, pp. 1638-1662 | DOI
[38] Simulating the QBO in an atmospheric general circulation model: Sensitivity to resolved and parameterized forcing, J. Atmos. Sci., Volume 73 (2016) no. 4, pp. 1649-1665 | DOI
[39] Shape and size of large-scale vortices: A generic fluid pattern in geophysical fluid dynamics, Phys. Rev. Res., Volume 2 (2020) no. 2, 023143
[40] Thermal evolution of the core with a high thermal conductivity, Phys. Earth Planet. Inter., Volume 247 (2015), pp. 36-55 | DOI
[41] Generation of MAC waves by convection in Earth’s core, Geophys. J. Int., Volume 209 (2017) no. 2, pp. 1326-1336 | DOI
Cité par Sources :
Commentaires - Politique