Comptes Rendus
Article de recherche
Modeling and simulations of hydrodynamic shocks in a plasma flowing across randomized ICF scale laser beams
[Modélisation et simulations numériques de chocs hydrodynamiques dans un plasma avec flot à travers de faisceaux laser issus du lissage optique]
Comptes Rendus. Physique, Volume 25 (2024), pp. 353-365.

Cet article fait partie du numéro thématique Ondes au service des plasmas, plasmas au service des ondes coordonné par Julien Hillairet.  

L’interaction d’un faisceau laser de puissance avec un plasma en écoulement peut produire une réponse du plasma tel que le faisceau subit une déflection. Les faisceaux des lasers de puissance ont généralement une sous-structure de « points chauds » générée par les techniques du « lissage » optique qui a le but de réduire la cohérence spatiale et temporelle du champ laser sur la cible. La réponse cumulative du plasma chaud suite aux points chauds peut décélérer la vitesse du flot entrant due à la conservation du moment. Pour un flot faiblement super-sonique cette réponse cumulative due à la force pondéromotrice exercée par les points chauds est assez forte pour que la décélération du flot à des vitesses sub-soniques provoque la formation d’une onde de choc qui se propage contre le flot entrant. Ce scénario a été prédit par des travaux théoriques. Nos simulations hydro-dynamiques en deux dimensions avec des faisceaux « lissés » et en une dimension avec un modèle réduit confirment la formation de ce type de chocs qui dépend essentiellement du potentiel pondéromoteur des faiscaux laser, de la taille des points chauds et du nombre Mach du flot entrant. Deux méthodes de lissage optique sont étudiées, le lissage spatial par lames de phases aléatoires (random phase plates :« RPP » ) et le lisssage spatio-temporel par dispersion spectrale (smoothing by spectral dispersion : « SSD » ), ce dernier provoquant des chocs plus forts que dans le cas de la RPP pour le régime non linéaire des flux laser élevés. Les conditions nécessaires pour observer la formation de ce type de chocs dans le contexte de la Fusion par confinement intertiel (FCI) par laser sont également discutées.

High-energy laser beams interacting with flowing plasmas can produce a plasma response that leads to deflection of the beam, beam bending. Such beams have usually a speckle structure generated by optical smoothing techniques that reduce the spatial and temporal coherence in the laser field pattern. The cumulative plasma response from laser speckles slows down the velocity of the incoming flow by momentum conservation. For slightly super-sonic flow the cumulative plasma response to the ponderomotive force exerted by the beam speckle ensemble is the strongest, such that slowing down the flow to subsonic velocities leads eventually to the generation of a shock around the cross section of the beam. This scenario has been predicted theoretically and is confirmed here by our hydrodynamic simulations in two dimensions with speckled beams and in one dimension with a reduced model. The conditions of shock generation are given in terms of the ponderomotive pressure, speckle size and the flow velocity. The nonlinear properties of the shocks are analyzed using Rankine–Hugoniot relations. According to linear theory, temporally smoothed laser beams exhibit a higher threshold for shock generation. Numerical simulations with beams that are smoothed by spectral dispersion compare well with the linear theory results, diverging from those produced by beams with only a random phase plates in the nonlinear regime. The conditions necessary for shock generation and their effects on the laser plasma coupling in inertial confinement fusion (ICF) experiments are also discussed.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.200
Keywords: laser shock, laser plasma interaction, optically smoothed laser beams
Mots-clés : chocs laser, interaction laser-plasma, lissage optique

S. Hüller 1 ; J. D. T. Ludwig 2 ; H. A. Rose 3 ; C. Bruulsema 2 ; W. Farmer 2 ; P. Michel 2 ; A. L. Milder 4 ; G. F. Swadling 2 ; W. Rozmus 4

1 Centre de Physique Théorique CPHT, CNRS UMR 7644, Ecole polytechnique, Insitut Polytechnique Paris, 91128 Palaiseau Cedex, France
2 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
3 Los Alamos National Laboratory, Los Alamos, New Mexico, USA 87545
4 Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_G1_353_0,
     author = {S. H\"uller and J. D. T. Ludwig and H. A. Rose and C. Bruulsema and W. Farmer and P. Michel and A. L. Milder and G. F. Swadling and W. Rozmus},
     title = {Modeling and simulations of hydrodynamic shocks in a plasma flowing across randomized {ICF} scale laser beams},
     journal = {Comptes Rendus. Physique},
     pages = {353--365},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.200},
     language = {en},
}
TY  - JOUR
AU  - S. Hüller
AU  - J. D. T. Ludwig
AU  - H. A. Rose
AU  - C. Bruulsema
AU  - W. Farmer
AU  - P. Michel
AU  - A. L. Milder
AU  - G. F. Swadling
AU  - W. Rozmus
TI  - Modeling and simulations of hydrodynamic shocks in a plasma flowing across randomized ICF scale laser beams
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 353
EP  - 365
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.200
LA  - en
ID  - CRPHYS_2024__25_G1_353_0
ER  - 
%0 Journal Article
%A S. Hüller
%A J. D. T. Ludwig
%A H. A. Rose
%A C. Bruulsema
%A W. Farmer
%A P. Michel
%A A. L. Milder
%A G. F. Swadling
%A W. Rozmus
%T Modeling and simulations of hydrodynamic shocks in a plasma flowing across randomized ICF scale laser beams
%J Comptes Rendus. Physique
%D 2024
%P 353-365
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.200
%G en
%F CRPHYS_2024__25_G1_353_0
S. Hüller; J. D. T. Ludwig; H. A. Rose; C. Bruulsema; W. Farmer; P. Michel; A. L. Milder; G. F. Swadling; W. Rozmus. Modeling and simulations of hydrodynamic shocks in a plasma flowing across randomized ICF scale laser beams. Comptes Rendus. Physique, Volume 25 (2024), pp. 353-365. doi : 10.5802/crphys.200. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.200/

[1] R. S. Craxton; K. S. Anderson; T. R. Boehly et al. Direct-drive inertial confinement fusion: A review, Phys. Plasmas, Volume 22 (2015) no. 11, 110501 | DOI

[2] E. M. Campbell; T. C. Sangster; V. N. Goncharov et al. Direct-drive laser fusion: status, plans and future, Philos. Trans. R. Soc. Lond., Ser. A, Volume 379 (2021) no. 2189, 20200011 | DOI

[3] J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas, Volume 2 (1995) no. 11, pp. 3933-4024 | DOI

[4] O. A. Hurricane; P. K. Patel; R. Betti et al. Physics principles of inertial confinement fusion and U.S. program overview, Rev. Mod. Phys., Volume 95 (2023), 025005 | DOI

[5] W. L. Kruer; S. C. Wilks; B. B. Afeyan; R. K. Kirkwood Energy transfer between crossing laser beams, Phys. Plasmas, Volume 3 (1996) no. 1, pp. 382-385 | DOI

[6] R. K. Kirkwood; B. B. Afeyan; W. L. Kruer et al. Observation of Energy Transfer between Frequency-Mismatched Laser Beams in a Large-Scale Plasma, Phys. Rev. Lett., Volume 76 (1996), pp. 2065-2068 | DOI

[7] V. V. Eliseev; W. Rozmus; V. T. Tikhonchuk; C. E. Capjack Interaction of crossed laser beams with plasmas, Phys. Plasmas, Volume 3 (1996) no. 6, pp. 2215-2217 | DOI

[8] P. Michel; L. Divol; E. A. Williams et al. Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer, Phys. Rev. Lett., Volume 102 (2009), 025004 | DOI

[9] P. Michel; L. Divol; E. A. Williams et al. Energy transfer between laser beams crossing in ignition hohlraums, Phys. Plasmas, Volume 16 (2009) no. 4, 042702 | DOI

[10] A. Colaïtis; D. Hüller; V. T. Duchateau Crossed beam energy transfer: Assessment of the paraxial complex geometrical optics approach versus a time-dependent paraxial method to describe experimental results, Phys. Plasmas, Volume 23 (2016) no. 3, 032118 | DOI

[11] J. Candy; W. Rozmus; V. T. Tikhonchuk Nonlinear ion waves driven by the periodic ponderomotive force, Phys. Rev. Lett., Volume 65 (1990), pp. 1889-1892 | DOI

[12] S. Hüller Stimulated Brillouin scattering off nonlinear ion acoustic waves, Phys. Fluids B, Volume 3 (1991) no. 12, pp. 3317-3330 | DOI

[13] H. A. Rose Saturation of stimulated Brillouin scatter by self-consistent flow profile modification in laser hot spots, Phys. Plasmas, Volume 4 (1997) no. 2, pp. 437-446 | DOI

[14] D. E. Hinkel; E. A. Williams; C. H. Still Laser Beam Deflection Induced by Transverse Plasma Flow, Phys. Rev. Lett., Volume 77 (1996), pp. 1298-1301 | DOI

[15] H. A. Rose Laser beam deflection by flow and nonlinear self-focusing, Phys. Plasmas, Volume 3 (1996) no. 5, pp. 1709-1727 | DOI

[16] J. D. Moody; B. J. MacGowan; D. E. Hinkel et al. First Optical Observation of Intensity Dependent Laser Beam Deflection in a Flowing Plasma, Phys. Rev. Lett., Volume 77 (1996), pp. 1294-1297 | DOI

[17] B. Bezzerides Intrinsic bending of a laser beam in a flowing plasma, Phys. Plasmas, Volume 5 (1998) no. 7, pp. 2712-2720 | DOI

[18] H. A. Rose; S. Ghosal Effect of smoothing by spectral dispersion on flow induced laser beam deflection: The random phase modulation scheme, Phys. Plasmas, Volume 5 (1998) no. 3, pp. 775-781 | DOI

[19] S. Ghosal; H. A. Rose Two-dimensional plasma flow past a laser beam, Phys. Plasmas, Volume 4 (1997) no. 7, pp. 2376-2396 | DOI

[20] S. Ghosal; H. A. Rose Effect of induced spatial incoherence on flow induced laser beam deflection: Analytic theory, Phys. Plasmas, Volume 4 (1997) no. 12, pp. 4189-4191 | DOI

[21] H. A. Rose; D. F. DuBois Modification of stimulated Brillouin, saturated Raman scattering and strong Langmuir turbulence by nonlocal heat transport, Phys. Fluids B, Volume 4 (1992) no. 6, pp. 1394-1396 | DOI

[22] R. W. Short; R. Bingham; E. A. Williams Filamentation of laser light in flowing plasmas, Phys. Fluids, Volume 25 (1982) no. 12, pp. 2302-2303 | DOI

[23] A. J. Schmitt The effects of plasma flow on thermal and ponderomotive light filamentation, Phys. Fluids B, Volume 1 (1989) no. 6, pp. 1287-1294 | DOI

[24] C. Ruyer; P. Loiseau; G. Riazuelo; R. Riquier; A. Debayle; P. E. Masson-Laborde; O. Morice Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions, Matter Radiat. Extremes, Volume 8 (2023) no. 2, 025901 | DOI

[25] J. D. Ludwig; S. Hüller; H. A. Rose et al. Shock formation in flowing plasmas by temporally and spatially smoothed laser beams, Phys. Plasmas, Volume 31 (2024) no. 3, 032103 | DOI

[26] R. J. LeVecque Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, J. Comput. Phys., Volume 131 (1997) no. 2, pp. 327-353 | DOI

[27] R. J. LeVeque Numerical Methods for Conservation Laws, Birkhäuser: Basel, 1992 | DOI | Zbl

[28] S. Hüller; P. E. Masson-Laborde; D. Pesme; M. Casanova; F. Detering; A. Maximov Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering, Phys. Plasmas, Volume 13 (2006) no. 2, 022703 | DOI

[29] H. A. Rose; D. F. DuBois Statistical properties of hot spots produced by a random phase plate, Phys. Fluids B, Volume 5 (1993), pp. 590-596 | DOI

[30] S. Skupsky; R. W. Short; T. Kessler; R. S. Craxton; S. Letzring; J. M. Soures Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys., Volume 66 (1989) no. 8, pp. 3456-3462 | DOI

[31] T. R. Boehly; V. N. Goncharov; O. Gotchev et al. Optical and plasma smoothing of laser imprinting in targets driven by lasers with SSD bandwidths up to 1 THz, Phys. Plasmas, Volume 8 (2001) no. 5, pp. 2331-2337 | DOI

[32] F. Walraet; G. Bonnaud; G. Riazuelo Velocities of speckles in a smoothed laser beam propagating in a plasma, Phys. Plasmas, Volume 8 (2001) no. 11, pp. 4717-4720 | DOI

[33] A. Fusaro; R. Collin; G. Riazuelo; P. Loiseau; O. Thauvin; D. Penninckx On the improvement of smoothing by spectral dispersion efficiency for laser-plasma interaction, Phys. Plasmas, Volume 31 (2024) no. 1, 012110 | DOI

[34] J. Spurk; N. Aksel Fluid Mechanics, Springer, 2020 | DOI | Zbl

Cité par Sources :

Commentaires - Politique