Comptes Rendus
Article de recherche
Measuring short range stray electric fields with a force quantum sensor
[Mesures de champs électriques parasites à courte distance à l’aide d’un capteur quantique de force]
Comptes Rendus. Physique, Volume 26 (2025), pp. 631-639

Cet article fait partie du numéro thématique Mesures quantiques coordonné par David Clément et al..  

We use a quantum sensor based on trapped atom interferometry, and designed for probing short range atom-surface interactions, to characterize parasitic electric fields produced by adsorbed atoms or surface charges on a dielectric mirror. Applying controlled external fields with in-situ electrodes allows measuring electric field gradients with a relative uncertainty of order of 1% via variations of the force induced onto the atoms. More, our sensor can also be configured as a trapped microwave clock, allowing for direct measurements of the electric field amplitude via the Stark shift of the hyperfine transition frequency. Such measurements of the electric field amplitudes and gradients as a function of the atom-surface distance can be used to construct a model for the spatial distribution of the atoms adsorbed onto the surface of the mirror, and to accurately correct local force measurements, such as related to the Casimir–Polder interaction, from the detrimental impact of adsorbed atoms or stray charges.

Nous utilisons un capteur quantique basé sur l’interférométrie à atomes piégés, et conçu pour sonder les interactions atomes-surface à courte distance, pour caractériser les champs électriques parasites produits par des atomes adsorbés ou des charges de surface sur un miroir diélectrique. L’application à l’aide d’électrodes in situ de champs externes contrôlés permet de mesurer les gradients de champ électrique avec une incertitude relative de l’ordre de 1 % grâce aux variations de la force induite sur les atomes. En outre, notre capteur peut également être configuré comme une horloge micro-onde piégée, ce qui permet de mesurer directement l’amplitude du champ électrique par le biais du décalage Stark de la fréquence de la transition hyperfine. Ces mesures des amplitudes et des gradients du champ électrique en fonction de la distance atomes-surface peuvent être utilisées pour construire un modèle de distribution spatiale des atomes adsorbés sur la surface du miroir et pour corriger avec précision les mesures de force locale, telles que celles liées à l’interaction Casimir–Polder, de l’impact préjudiciable d’atomes adsorbés ou de charges parasites.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.264
Keywords: Quantum sensing, Short range forces, Electric fields
Mots-clés : Capteurs quantiques, Forces à faible distance, Champs électriques

Yann Balland 1 ; Franck Pereira dos Santos 1

1 LTE, Observatoire de Paris, Université PSL, Sorbonne Université, Université de Lille, LNE, CNRS, 61 avenue de l’Observatoire, 75014 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_631_0,
     author = {Yann Balland and Franck Pereira dos Santos},
     title = {Measuring short range stray electric fields with a force quantum sensor},
     journal = {Comptes Rendus. Physique},
     pages = {631--639},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     doi = {10.5802/crphys.264},
     language = {en},
}
TY  - JOUR
AU  - Yann Balland
AU  - Franck Pereira dos Santos
TI  - Measuring short range stray electric fields with a force quantum sensor
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 631
EP  - 639
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.264
LA  - en
ID  - CRPHYS_2025__26_G1_631_0
ER  - 
%0 Journal Article
%A Yann Balland
%A Franck Pereira dos Santos
%T Measuring short range stray electric fields with a force quantum sensor
%J Comptes Rendus. Physique
%D 2025
%P 631-639
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.264
%G en
%F CRPHYS_2025__26_G1_631_0
Yann Balland; Franck Pereira dos Santos. Measuring short range stray electric fields with a force quantum sensor. Comptes Rendus. Physique, Volume 26 (2025), pp. 631-639. doi: 10.5802/crphys.264

[1] R. Geiger; A. Landragin; S. Merlet; F. Pereira Dos Santos High-accuracy inertial measurements with cold-atom sensors, AVS Quant. Sci., Volume 2 (2020) no. 2, 024702 | DOI

[2] B. Stray; A. Lamb; A. Kaushik et al. Quantum sensing for gravity cartography, Nature, Volume 602 (2022) no. 7898, pp. 590-594 | DOI

[3] Y. Bidel; N. Zahzam; C. Blanchard; A. Bonnin; M. Cadoret; A. Bresson; D. Rouxel; M. F. Lequentrec-Lalancette Absolute marine gravimetry with matter-wave interferometry, Nat. Commun., Volume 9 (2018), 627 | DOI

[4] Y. Bidel; N. Zahzam; A. Bresson; C. Blanchard; M. Cadoret; A. V. Olesen; R. Forsberg Absolute airborne gravimetry with a cold atom sensor, J. Geodesy, Volume 94 (2020) no. 2, 20 | DOI

[5] O. Carraz; C. Siemes; L. Massotti; R. Haagmans; P. Silvestrin A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field, Microgravity Sci. Technol., Volume 26 (2014), 139 | DOI

[6] F. Migliaccio; M. Reguzzoni; K. Batsukh et al. MOCASS: a satellite mission concept using cold atom interferometry for measuring the Earth gravity field, Surv. Geophys., Volume 40 (2019) no. 5, pp. 1029-1053 | DOI

[7] T. Lévèque; C. Fallet; M. Mandea et al. Gravity field mapping using laser-coupled quantum accelerometers in space, J. Geodesy, Volume 95 (2021) no. 1, 15 | DOI

[8] A. HosseiniArani; M. Schilling; Q. Beaufils et al. Advances in atom interferometry and their impacts on the performance of quantum accelerometers on-board future satellite gravity missions, Adv. Space Res., Volume 74 (2024) no. 7, pp. 3186-3200 | DOI

[9] P. Zingerle; T. Gruber; R. Pail; I. Daras Constellation design and performance of future quantum satellite gravity missions, Earth Planets Space, Volume 76 (2024) no. 1, 101 | DOI

[10] Q. d’Armagnac de Castanet; C. Des Cognets; R. Arguel et al. Atom interferometry at arbitrary orientations and rotation rates, Nat. Commun., Volume 15 (2024) no. 1, 6406 | DOI

[11] M. Jaffe; P. Haslinger; V. Xu; P. Hamilton; A. Upadhye; B. Elder; J. Khoury; H. Müller Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass, Nat. Phys., Volume 13 (2017) no. 10, pp. 938-942 | DOI

[12] D. O. Sabulsky; I. Dutta; E. A. Hinds; B. Elder; C. Burrage; E. J. Copeland Experiment to detect dark energy forces using atom interferometry, Phys. Rev. Lett., Volume 123 (2019) no. 6, 061102 | DOI

[13] G. M. Tino Testing gravity with cold atom interferometry: results and prospects, Quant. Sci. Technol., Volume 6 (2021) no. 2, 024014 | DOI

[14] C. Struckmann; R. Corgier; S. Loriani et al. Platform and environment requirements of a satellite quantum test of the weak equivalence principle at the 10 -17 level, Phys. Rev. D, Volume 109 (2024) no. 6, 064010 | DOI

[15] M. Thomas; D. Ziane; P. Pinot et al. A determination of the Planck constant using the LNE Kibble balance in air, Metrologia, Volume 54 (2017) no. 4, pp. 468-480 | DOI

[16] V. Ménoret; P. Vermeulen; N. Le Moigne; S. Bonvalot; P. Bouyer; A. Landragin; B. Desruelle Gravity measurements below 109 g with a transportable absolute quantum gravimeter, Sci. Rep., Volume 8 (2018) no. 1, 12300 | DOI

[17] L. Antoni-Micollier; D. Carbone; V. Ménoret et al. Detecting volcano-related underground mass changes with a quantum gravimeter, Geophys. Res. Lett., Volume 49 (2022) no. 13, e2022GL097814 | DOI

[18] A. Güntner; M. Reich; J. Glässel; A. Reinhold; H. Wziontek Mobile field measurements with a quantum gravimeter: technical setup and performance, IEEE Instrum. Meas. Mag., Volume 27 (2024) no. 6, pp. 53-59 | DOI

[19] M. Diament; G. Lion; G. Pajot-Métivier; S. Merlet; S. Déroussi The AQG-B absolute quantum gravimeter: a promising sensor for volcano monitoring, IEEE Instrum. Meas. Mag., Volume 27 (2024) no. 6, pp. 17-23 | DOI

[20] M. Keil; O. Amit; S. Zhou; D. Groswasser; Y. Japha; R. Folman Fifteen years of cold matter on the atom chip: promise, realizations, and prospects, J. Mod. Opt., Volume 63 (2016) no. 18, pp. 1840-1885 | DOI

[21] C. L. Garrido Alzar Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study, AVS Quant. Sci., Volume 1 (2019) no. 1, 014702 | DOI

[22] G. D. McDonald; H. Keal; P. A. Altin et al. Optically guided linear Mach–Zehnder atom interferometer, Phys. Rev. A, Volume 87 (2013), 013632 | DOI

[23] M. Egorov; R. P. Anderson; V. Ivannikov; B. Opanchuk; P. Drummond; B. V. Hall; A. I. Sidorov Long-lived periodic revivals of coherence in an interacting Bose–Einstein condensate, Phys. Rev. A, Volume 84 (2011) no. 2, 021605 | DOI

[24] A. Hilico; C. Solaro; M.-K. Zhou; M. Lopez; F. Pereira dos Santos Contrast decay in a trapped-atom interferometer, Phys. Rev. A, Volume 91 (2015), 053616 | DOI

[25] M. Ammar; M. Dupont-Nivet; L. Huet et al. Symmetric microwave potentials for interferometry with thermal atoms on a chip, Phys. Rev. A, Volume 91 (2015) no. 5, 053623 | DOI

[26] C. D. Panda; M. Tao; J. Egelhoff; M. Ceja; V. Xu; H. Müller Coherence limits in lattice atom interferometry at the one-minute scale, Nat. Phys., Volume 20 (2024) no. 8, pp. 1234-1239 | DOI

[27] B. Pelle; A. Hilico; G. Tackmann; Q. Beaufils; F. Pereira dos Santos State-labeling Wannier–Stark atomic interferometers, Phys. Rev. A, Volume 87 (2013) no. 2, 023601 | DOI

[28] P. Haslinger; M. Jaffe; V. Xu; O. Schwartz; M. Sonnleitner; M. Ritsch-Marte; H. Ritsch; H. Müller Attractive force on atoms due to blackbody radiation, Nat. Phys., Volume 14 (2018) no. 3, pp. 257-260 | DOI

[29] D. M. Harber; J. M. Obrecht; J. M. McGuirk; E. A. Cornell Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate, Phys. Rev. A, Volume 72 (2005) no. 3, 033610 | DOI

[30] X. Alauze; A. Bonnin; C. Solaro; F. P. D. Santos A trapped ultracold atom force sensor with a m-scale spatial resolution, New J. Phys., Volume 20 (2018) no. 8, 083014 | DOI

[31] Y. Balland; L. Absil; F. Pereira Dos Santos Quectonewton local force sensor, Phys. Rev. Lett., Volume 133 (2024) no. 11, 113403 | DOI

[32] J. M. McGuirk; D. M. Harber; J. M. Obrecht; E. A. Cornell Alkali–metal adsorbate polarization on conducting and insulating surfaces probed with Bose–Einstein condensates, Phys. Rev. A, Volume 69 (2004) no. 6, 062905 | DOI

[33] J. M. Obrecht; R. J. Wild; E. A. Cornell Measuring electric fields from surface contaminants with neutral atoms, Phys. Rev. A, Volume 75 (2007) no. 6, 062903 | DOI

[34] M. Meucci; E. Mariotti; P. Bicchi; C. Marinelli; L. Moi Light-induced atom desorption, Europhys. Lett., Volume 25 (1994) no. 9, 639 | DOI

[35] L. Torralbo-Campo; G. D. Bruce; G. Smirne; D. Cassettari Light-induced atomic desorption in a compact system for ultracold atoms, Sci. Rep., Volume 5 (2015) no. 1, 14729 | DOI

[36] C. Klempt; T. van Zoest; T. Henninger; O. Topic; E. Rasel; W. Ertmer; J. Arlt Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps, Phys. Rev. A, Volume 73 (2006) no. 1, 013410 | DOI

[37] J. Lodewyck; M. Zawada; L. Lorini; M. Gurov; P. Lemonde Observation and cancellation of the dc Stark shift in strontium optical lattice clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 411-415 | DOI

[38] M. Harlander; M. Brownnutt; W. Hänsel; R. Blatt Trapped-ion probing of light-induced charging effects on dielectrics, New J. Phys., Volume 12 (2010) no. 9, 093035 | DOI

[39] L. Ma; E. Paradis; G. Raithel DC electric fields in electrode-free glass vapor cell by photoillumination, Opt. Express, Volume 28 (2020) no. 3, pp. 3676-3685 | DOI

[40] L. Patrick; N. Schlossberger; D. F. Hammerland et al. Imaging of induced surface charge distribution effects in glass vapor cells used for Rydberg atom-based sensors, AVS Quant. Sci., Volume 7 (2025) no. 2, 024401 | DOI

[41] Y.-J. Chen; W. K. Tham; D. E. Krause; D. López; E. Fischbach; R. S. Decca Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range, Phys. Rev. Lett., Volume 116 (2016) no. 22, 221102 | DOI

[42] L.-L. Chen; W.-J. Xu; M.-K. Zhou; Z.-K. Hu Testing chameleon dark energy at short range with atom interferometer, Phys. Rev. D, Volume 109 (2024) no. 12, 123515 | DOI

Cité par Sources :

Commentaires - Politique