Outline
Comptes Rendus

Development and reproduction biology/Biologie du développement de la reproduction
Spermatological characteristics of the Trypanorhyncha inferred from new ultrastructural data on species of Tentaculariidae, Eutetrarhynchidae, and Progrillotiidae
Comptes Rendus. Biologies, Volume 336 (2013) no. 2, pp. 65-72.

Abstracts

The present study focuses on the ultrastructural characteristics of both spermiogenesis and the spermatozoon in the order Trypanorhyncha. New ultrastructural data are presented for two species of the unexplored superfamily Tentacularioidea, Nybelinia queenslandensis, and Kotorella pronosoma. The present study also provides supplementary data on the superfamily Eutetrarhynchoidea, with the analysis of spermiogenesis and spermatozoon of two progrillotiids, Progrillotia dasyatidis and Pro. pastinacae, and new ultrastructural data concerning spermiogenesis in the eutetrarhynchids Dollfusiella spinulifera and Parachristianella trygonis. Spermiogenesis in trypanorhynchs follows the Bâ and Marchand's type I and the ultrastructural organisation of the mature spermatozoon corresponds to the Levron et al.’s type I. The most remarkable characters concerns the number of electron-dense plates constituting the intercentriolar body during spermiogenesis and in the variability of the arc-like row of thick cortical microtubules present in the anterior areas of the spermatozoon because of its variability according to the species.

Cette étude porte sur les caractéristiques ultrastructurales de la spermiogenèse et du spermatozoïde dans l’ordre Trypanorhyncha. Des nouvelles données sont présentées pour deux espèces, Nybelinia queenslandensis et Kotorella pronosoma, de la super-famille précédemment non explorée Tentacularioidea. Cette étude fournit aussi des informations supplémentaires sur la super-famille Eutetrarhynchoidea, avec une analyse de la spermiogenèse et du spermatozoïde de deux Progrillotiidae, Progrillotia dasyatidis et Pro. pastinacae, et de nouvelles données ultrastructurales concernant la spermiogenèse chez les Eutetrarhynchidae Dollfusiella spinulifera et Parachristianella trygonis. La spermiogenèse chez les Trypanorhynques suit le Type I de Bâ et Marchand et l’organisation ultrastructurale du spermatozoïde correspond au type I de Levron et al. Les caractères les plus remarquables concernent le nombre de plaques denses aux électrons qui constituent le corps intercentriolaire pendant la spermiogenèse et la variabilité de la rangée en arc de microtubules corticaux épais présents dans les régions antérieures du spermatozoïde, à cause de la variabilité parmi les espèces.

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crvi.2013.02.005
Keywords: Spermiogenesis, Spermatozoon, Ultrastructure, Cestoda, Trypanorhyncha, Tentaculariidae, Eutetrarhynchidae, Progrillotiidae
Mot clés : Spermiogenèse, Spermatozoïde, Ultrastructure, Cestoda, Trypanorhyncha, Tentaculariidae, Eutetrarhynchidae, Progrillotiidae

Jordi Miquel 1, 2; Zdzisław Świderski 3, 4

1 Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avenue Joan XXIII, s/n, 08028 Barcelona, Spain
2 Institut de Recerca de la Biodiversitat (IRBIO), Facultat de Biologia, Universitat de Barcelona, Avenue Diagonal, 645, 08028 Barcelona, Spain
3 W. Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
4 Department of General Biology and Parasitology, Warsaw Medical University, Warsaw, Poland
@article{CRBIOL_2013__336_2_65_0,
     author = {Jordi Miquel and Zdzis{\l}aw \'Swiderski},
     title = {Spermatological characteristics of the {Trypanorhyncha} inferred from new ultrastructural data on species of {Tentaculariidae,} {Eutetrarhynchidae,} and {Progrillotiidae}},
     journal = {Comptes Rendus. Biologies},
     pages = {65--72},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2013},
     doi = {10.1016/j.crvi.2013.02.005},
     language = {en},
}
TY  - JOUR
AU  - Jordi Miquel
AU  - Zdzisław Świderski
TI  - Spermatological characteristics of the Trypanorhyncha inferred from new ultrastructural data on species of Tentaculariidae, Eutetrarhynchidae, and Progrillotiidae
JO  - Comptes Rendus. Biologies
PY  - 2013
SP  - 65
EP  - 72
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crvi.2013.02.005
LA  - en
ID  - CRBIOL_2013__336_2_65_0
ER  - 
%0 Journal Article
%A Jordi Miquel
%A Zdzisław Świderski
%T Spermatological characteristics of the Trypanorhyncha inferred from new ultrastructural data on species of Tentaculariidae, Eutetrarhynchidae, and Progrillotiidae
%J Comptes Rendus. Biologies
%D 2013
%P 65-72
%V 336
%N 2
%I Elsevier
%R 10.1016/j.crvi.2013.02.005
%G en
%F CRBIOL_2013__336_2_65_0
Jordi Miquel; Zdzisław Świderski. Spermatological characteristics of the Trypanorhyncha inferred from new ultrastructural data on species of Tentaculariidae, Eutetrarhynchidae, and Progrillotiidae. Comptes Rendus. Biologies, Volume 336 (2013) no. 2, pp. 65-72. doi : 10.1016/j.crvi.2013.02.005. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2013.02.005/

Version originale du texte intégral

1 Introduction

Trypanorhynchs are polyzoic cestodes, readily recognised by their rhyncheal apparatus, and are common metazoan parasites of marine fish. Adult worms parasitize elasmobranch fishes while their larval stages occur in a variety of teleosts, elasmobranchs and marine invertebrates (crustaceans, cephalopods and bivalves), including zooplankton [1]. Trypanorhynchs possess a scolex with two or four bothria [2] and also a tentacular apparatus consisting of four retractile tentacles armed with hooks that are attached to four bulbs [3]. This rhyncheal apparatus is unique within the cestodes, and provides a strong synapomorphy that supports the monophyly of this order [4].

This order has been considered to be one of the most chaotic and confusing tapeworm groups, but recent work has shed considerable light on their systematics [5]. Morphological evidence strongly supports the monophyly of trypanorhynchs [1,5]. Although Waeschenbach et al. [6] presented molecular data that support the monophyly of the Trypanorhyncha, other molecular studies have suggested that this order is paraphyletic and consists of two well-supported clades [4,7–9]. The first clade groups together the superfamilies Eutetrarhynchoidea and Tentacularioidea while the second clade groups together the Gymnorhynchoidea, the Lacistorhynchoidea and the Otobothrioidea. Recently, Olson et al. [10], in a combined analysis of molecular and morphological data, identified two clades with each one occurring in the two principal clades of the elasmobranch definitive hosts (rays or sharks) and they proposed the suborders Trypanobatoida and Trypanoselachoida for these two major clades according to the primarily hosts parasitized, rays and sharks, respectively. The Trypanobatoida contains the Tentacularioidea (including the eutetrarhynchoids) and the Trypanoselachoida contains the Lacistorhynchoidea, the Otobothrioidea and the Gymnorhynchoidea.

The ultrastructural studies on cestode spermatozoa have proved useful in interpreting their phylogenetic relationships within the Platyhelminthes and could, therefore, provide useful morphological indicators of the phylogeny and/or classification of trypanorhynchs [11–19]. However, in the Trypanorhyncha, studies of spermiogenesis and/or spermatozoa are limited to species belonging to three of the five superfamilies, namely Gymnorhynchoidea, Lacistorhynchoidea and Eutetrarhynchoidea. These are Grillotia erinaceus and Lacistorhynchus tenuis [20–22] (Lacistorhynchoidea), Aporhynchus menezesi [23] (Gymnorhynchoidea), and Dollfusiella spinulifera and Parachristianella trygonis [24,25] (Eutetrarhynchoidea).

The aim of this present study is to analyse, for the first time, the spermatological patterns of two species of the unexplored superfamily Tentacularioidea, Nybelinia queenslandensis and Kotorella pronosoma. The present study also provides supplementary data on the superfamily Eutetrarhynchoidea, with the analysis of spermiogenesis and mature spermatozoon of two progrillotiids, Progrillotia dasyatidis and Progrillotia pastinacae, and new ultrastructural data concerning spermiogenesis in the eutetrarhynchids Dollfusiella spinulifera and Parachristianella trygonis. These new ultrastructural observations are focussed in the number of plates, constituting the intercentriolar body during spermiogenesis and in the variability of the arc-like row of thick cortical microtubules present in the anterior areas of the spermatozoon. In fact, these two characters are showed as the most interesting in this order because of its variability according to the species.

2 Materials and methods

Live adult specimens of N. queenslandensis and K. pronosoma were collected by Prof. Ian Beveridge, University of Melbourne, from Carcharhinus melanopterus and Himantura granulata, respectively, caught off Lizard Island (Queensland, Australia). D. spinulifera was provided by Prof. Malcolm K. Jones from Rhinobatos typus collected on the reef flats at Heron Island (Queensland, Australia). Pro. dasyatidis and Pro. pastinacae were collected from Dasyatis tortonesei and Dasyatis pastinaca, respectively, caught off Sidi Mansour and Zarzis (Gulf of Gabès, Tunisia). Finally, P. trygonis was collected from Dasyatis pastinaca caught off Sidi Mansour (Gulf of Gabès, Tunisia). All the three species isolated from Tunisian elasmobranchs were collected in collaboration with Dr Lassad Neifar (University of Sfax).

After dissection, the mature proglottids from these cestodes were routinely processed for transmission electron microscopy examination. Thus, they were fixed in cold (4 °C) 2.5% glutaraldehyde in a 0.1 M sodium cacodylate buffer at pH 7.4 for a minimum of 2 h, rinsed in a 0.1 M sodium cacodylate buffer at pH 7.4, post-fixed in cold (4 °C) 1% osmium tetroxide (OsO4) with 0.9% potassium ferricyanide [K3Fe(CN)6] in the same buffer for 1 h, rinsed in milliQ water, dehydrated in an ethanol series and propylene oxide, and finally, embedded in Spurr's resin. Ultrathin sections (50–60 nm thick) were obtained using a Reichert–Jung Ultracut E ultramicrotome, placed on copper grids and double-stained with uranyl acetate and lead citrate. The ultrathin sections were examined using a JEOL 1010 TEM operated at an accelerating voltage of 80 kV.

3 Results

3.1 Spermiogenesis

Spermiogenesis in all the species studied begins with the formation of a differentiation zone in each spermatid. This area is a conical-shaped region bordered by cortical microtubules and delimited at its base by a ring of arched membranes. It also has two centrioles associated with striated rootlets and separated by an intercentriolar body. The intercentriolar body consists of three electron-dense plates separated by electron-lucent ones in all the species studied (K. pronosoma, N. queenslandensis, D. spinulifera, P. trygonis, Pro. dasyatidis and Pro. pastinacae) ((Figs. 1–5)). The two centrioles develop into two orthogonal flagella with respect to a developing median cytoplasmic process. The cortical microtubules lengthen along this growing median cytoplasmic process (Fig. 6). The nucleus initiates its elongation and the two flagella undergo a flagellar rotation and become parallel to the median cytoplasmic process (Fig. 6). The flagellar rotation is followed by the proximo-distal fusion of the two flagella with the median cytoplasmic process. Finally, the ring of arching membranes is tightened and the young spermatozoon is detached from the residual cytoplasm.

Figs. 1–6

Spermiogenesis in trypanorhynchs. (1) Zone of differentiation of Parachristianella trygonis before the proximo-distal fusion of the flagella (F) with the median cytoplasmic process (MCP). Note the three electron-dense bands of the intercentriolar body (arrowheads). AM: arched membranes; N: nucleus; SR: striated rootlets. (2–5) Cross-sections showing the number of electron-dense plates of the intercentriolar body (arrowheads) in Nybelinia queenslandensis (Fig. 2), Dollfusiella spinulifera (Fig. 3), Kotorella pronosoma (Fig. 4) and Progrillotia dasyatidis (Fig. 5). C: centrioles; CM: cortical microtubules; SR: striated rootlets. (6) Cross-sections of flagella (F) and median cytoplasmic processes (MCP) before the proximo-distal fusion in Dollfusiella spinulifera. CM: cortical microtubules. Scale bars = 0.5 μm.

3.2 Spermatozoon

The spermatozoon of trypanorhynchs, as in other cestodes, is a long filiform cell, tapered at both ends, which lacks mitochondria. Its cytoplasm contains: (1) two axonemes of different lengths with the 9 + ‘1′ pattern of trepaxonematan Platyhelminthes, (2) an arched row of thick and parallel cortical microtubules near the anterior extremity, (3) two rows of thin and parallel cortical microtubules, (4) a parallel nucleus, and (5) glycogen.

According to these ultrastructural characteristics, the mature spermatozoon of trypanorhynchs can be subdivided into four arbitrary regions characterized by different ultrastructural features.

Region I (Figs. 7–11) constitutes the anterior extremity of the sperm cell and contains a single axoneme. The anterior tip of the spermatozoon exhibits only a few microtubules. When the axoneme appears, it is surrounded by a submembraneous arc of thick and parallel cortical microtubules. In some species, several isolated cortical microtubules are located between this arc-like layer and the axoneme (Table 1).

Figs. 7–16

Mature spermatozoon in trypanorhynchs. (7) Longitudinal section near the anterior extremity of the spermatozoon of Kotorella pronosoma. C: centriole; CM: cortical microtubules. (8) Cross-section of the anterior extremity of the spermatozoon of Progrillotia pastinacae. CM: cortical microtubules. (9–11) Cross-sections of anterior areas of the spermatozoon (region I) of Kotorella pronosoma (Fig. 9), Progrillotia pastinacae (Fig. 10) and Nybelinia queenslandensis (Fig. 11) showing the arc-like row of thick cortical microtubules (CM). (12) Cross-section of region II of the spermatozoon of Kotorella pronosoma showing the two fields of thin cortical microtubules (CM) and granules of glycogen (G). (13) Cross-section of nuclear area (region III) of the spermatozoon of Progrillotia pastinacae showing the parallel disposition of the nucleus (N). CM: cortical microtubules; G: granules of glycogen. (14–16) Cross- and longitudinal sections of region IV of the spermatozoon of Kotorella pronosoma (Fig. 14) and Progrillotia pastinacae (Figs. 15–16) showing the posterior spermatozoon extremity (PSE) and the disorganization of the axoneme (Ax) into doublets (D). Scale bars = 0.5 μm (Figs. 7 and 16), 0.3 μm (Figs. 9–14), 0.2 μm (Figs. 8 and 15).

Table 1

Ultrastructural characters of spermiogenesis and the spermatozoon in the trypanorhynchs.

Superfamilies, families and species Spermiogenesis Spermatozoon
Typea IB Typeb ASE Ax CB ArcCM (n) M CM N G PSE Reference
Tentacularioidea
 Tentaculariidae
  Kotorella pronosoma I 3 I CM 2 + (10 + 3) + 1Ax [Present study]
  Nybelinia queenslandensis I 3 I ? 2 + (10 + 1) + 1Ax [Present study]
Gymnorhynchoidea
 Aporhynchidae
  Aporhynchus menezesi I 5 I CM 2 + (7) + 1Ax [23]
Lacistorhynchoidea
 Lacistorhynchidae
  Grillotia erinaceus I 7 I ? 2 ? + ? [20]
  Lacistothynchus tenuis I 5 I ? 2 ? + ? [21,22]
Eutetrarhynchoidea
 Eutetrarhynchidae
  Dollfusiella spinulifera I 3 I CM 2 + (10) + 1Ax [24, present study]
  Parachristianella trygonis I 3 I CM 2 + (10) + 1Ax [25, present study]
 Progrillotiidae
  Progrillotia dasyatidis I 3 I ? 2 + (?) + 1Ax [Present study]
  Progrillotia pastinacae I ? I CM 2 + (10 + 2) + 1Ax [Present study]

a Type of spermiogenesis is according to Bâ and Marchand [14].

b Type of spermatozoon is according to Levron et al. [19]

Region II (Fig. 12) is the pre-nuclear area containing two axonemes. In this region, the parallel cortical microtubules are thin and arranged in two fields.

Region III (Fig. 13) is the nuclear area of the spermatozoon. The nucleus is elongated and is disposed between the two axonemes. At the end of this region, the cortical microtubules disappear.

Region IV (Figs. 14–16) is the post-nuclear area of the male gamete and constitutes the posterior extremity of the spermatozoon that terminates with a single axoneme.

4 Discussion

4.1 Spermiogenesis

Spermiogenesis in trypanorhynchs is of type I of Bâ and Marchand [7]. This pattern is characterized by the growth of two orthogonal flagella with respect to a developing median cytoplasmic process. The two flagella undergo a flagellar rotation and become parallel to the median cytoplasmic process. Later, they fuse in a proximo-distal pattern and produce a spermatozoon with two axonemes.

The zone of differentiation is a conical-shaped region that contains two centrioles associated to two striated rootlets and exhibits an intercentriolar body between them. The intercentriolar body consists of a variable number of electron-dense plates according to the species. In our study we present new data on six species, namely D. spinulifera, P. trygonis, Pro. dasyatidis and Pro. pastinacae (Eutetrarhynchoidea), and K. pronosoma and N. queenslandensis (Tentacularoidea). In all of these species except for Pro. pastinacae, the intercentriolar body consists of three electron-dense plates. These are the species belonging to the Tentacularioidea and Eutetrarhynchoidea (Table 1). In previous studies, Świderski [22] describes seven electron-dense plates in Lacisthorhynchus tenuis, and McKerr [20] and Marigo et al. [23] describe five electron-dense plates in Grillotia erinaceus and Aporhynchus menezesi, respectively. These three species are included in two other superfamilies, namely the Gymnorhynchoidea and the Lacistorhynchoidea (Table 1).

4.2 Spermatozoon

The spermatozoon of trypanorhynchs, as in other cestodes, is a long filiform cell, tapered at both ends, which lacks mitochondria. Its cytoplasm contains: (1) two axonemes of different lengths with the 9+‘1′ trepaxonematan pattern [26], (2) an arched row of thick, parallel cortical microtubules near the anterior extremity, (3) two rows of thin, parallel cortical microtubules, (4) an elongated nucleus parallel to axonemes, and (5) glycogen in the form of α-glycogen rosettes and/or β-glycogen particles. Thus, the anterior and posterior extremities of the spermatozoon exhibit cortical microtubules and a single axoneme, respectively (Fig. 17).

Fig. 17

Schematic drawing of the mature spermatozoon of trypanorhynch species. ASE: anterior spermatozoon extremity; Ax1: first axoneme; Ax2: second axoneme; C1: centriole of the first axoneme; C2: centriole of the second axoneme; CM: cortical microtubules; N: nucleus; PSE: posterior spermatozoon extremity.

In fact, the ultrastructural organization of the mature spermatozoa in trypanorhynchs follows the type I of Levron et al. [19]. This pattern is also present in the orders Spathebothriidea, Diphyllobothriidea and Haplobothriidea and it is characterized by the presence of two axonemes and by the parallel disposition of both cortical microtubules and nucleus. The type I spermatozoon also lacks a crested body, a periaxonemal sheath and intracytoplasmic walls [19].

Unlike the majority of cestodes, trypanorhynch spematozoa lack a crested body or bodies [23-25, present study], and, consequently, the postulated synapomorphy of crested body or bodies for the Eucestoda is questionable [16,17,19]. There are other eucestode orders that also lack these anterior helical structures, e.g. the Caryophyllidea, the Spathebothriidea and the Diphyllobothriidea [27–38].

The arc-like row of cortical microtubules has been observed in the anterior part of the spermatozoon of numerous eucestodes, but there is variability in their aspect and number of elements. In trypanorhynchs the number of cortical microtubules forming this arc-like layer varies from seven to ten microtubules. Thus, K. pronosoma, N. queenslandensis, D. spinulifera, P. trygonis and Pro. pastinacae possess an arc-like row consisting of ten microtubules [24,25, present study], whereas according to Marigo et al. [23], in A. menezesi the maximum number is seven (Table 1). Anterior spermatozoon extremities showing a similar arrangement of cortical microtubules describing an arc-like layer are found in caryophyllideans [30,31,34,36,37], spathebothriideans [28,33], the former pseudophyllideans (Diphyllobothriidea and Bothriocephalidea) [29,32,39–43], the diphyllideans [44,45], the tetraphyllideans [46–50], the proteocephalideans [51–54], and in the mesocestoidid cyclophyllideans [55,56]. However, an arc-like layer consisting of thick cortical microtubules, as described in the trypanorhynchs, occurs only in the former pseudophyllideans, in the tetraphyllideans, in the proteocephalideans and in the mesocestoidids [29,32,39–42,46–56].

5 Concluding remarks

The results presented both here and in the previous studies indicate insignificant ultrastructural differences between the spermatological characters of the seven species studied and offer no additional support for the hypothesis, suggested by some authors that the trypanorhynchs are a polyphyletic group. However, these slight differences of sperm ultrastructure are coincident with the view of these authors [4,7–10]. The most remarkable differences between these species are (i) the number of electron-dense plates constituting the intercentriolar body (5 to 7 in the Gymnorhynchoidea and the Lacistorhynchoidea versus 3 in the Tentacularioidea and the Eutetrarhynchoidea) and (ii) the number of microtubules that form the arc-layer of thick cortical microtubules present in the anterior spermatozoon extremity (around 7 in the Gymnorhynchoidea and the Lacistorhynchoidea versus around 10 in the Tentacularioidea and the Eutetrarhynchoidea).

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Acknowledgements

The authors wish to thank Prof.  Ian Beveridge (University of Melbourne, Australia) and Prof. Malcolm K. Jones (University of Queensland, Australia) for providing some of the specimens studied in the present work. The English of this manuscript was kindly corrected by Prof. Beveridge. We also thank Dr Lassad Neifar (University of Sfax, Tunisia) for their valuable help in the field work during Tunisian expeditions and also for identifying the specimens collected in Tunisia. Dr George McKerr (University of Ulster, North Ireland, UK) kindly provided a copy of his PhD thesis for comparative purposes. We are grateful to the “Unitat de Microscòpia, Facultat de Medicina, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB)” for their support in the preparation of samples, particularly Núria Cortadellas and Almudena García. The present study was partly funded by grants from the “Agencia Española de Cooperación Internacional para el Desarrollo (AECID)” (Nos. A/2390/05, A/6244/06, A/015863/08 and A/023428/09) to Jordi Miquel.


References

[1] R.A. Campbell; I. Beveridge Order Trypanorhyncha Diesing, 1863 (L.F. Khalil; A. Jones; R.A. Bray, eds.), Keys to the cestodes parasite of vertebrates, CAB International, Wallingford, UK, 1994, pp. 51-148

[2] M.K. Jones; I. Beveridge; R.A. Campbell; H.W. Palm Terminology of the sucker-like organs of the scolex of trypanorhynch cestodes, Syst. Parasitol., Volume 59 (2004), pp. 121-126

[3] R.P. Dollfus Études critiques sur les Tétrarhynques du Museum de Paris, Arch. Mus. Natl. Hist. Nat., Volume 19 (1942), pp. 1-466

[4] H.W. Palm; A. Waeschenbach; P.D. Olson; D.T.J. Littlewood Molecular phylogeny and evolution of the Trypanorhyncha diesing, 1863 (Platyhelminthes: Cestoda), Mol. Phylogenet. Evol., Volume 52 (2009), pp. 351-367

[5] H.W. Palm The Trypanorhyncha Diesing, 1863, PKSPL-IPB Press, Bogor, 2004 (p710)

[6] A. Waeschenbach; B.L. Webster; R.A. Bray; D.T.J. Littlewood Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes, Mol. Phylogenet. Evol., Volume 45 (2007), pp. 311-325

[7] P.D. Olson; J.N. Caira Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor-1α, J. Parasitol., Volume 85 (1999), pp. 1134-1159

[8] I. Kodedová; D. Doležel; M. Broučková; M. Jirků; V. Hypša; J. Lukeš; T. Scholz On the phylogenetic positions of the Caryophyllidea, Pseudophyllidea and Proteocephalidea (Eucestoda) inferred from 18S rRNA, Int. J. Parasitol., Volume 30 (2000), pp. 1109-1113

[9] P.D. Olson; D.T.J. Littlewood; R.A. Bray; J. Mariaux Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda), Mol. Phylogenet. Evol., Volume 19 (2001), pp. 443-467

[10] P.D. Olson; J.N. Caira; K. Jensen; R.M. Overstreet; H.W. Palm; I. Beveridge Evolution of the trypanorhynch tapeworms: parasite phylogeny supports independent lineages of sharks and rays, Int. J. Parasitol., Volume 40 (2010), pp. 223-242

[11] L. Euzet; Z. Świderski; F. Mokhtar-Maamouri Ultrastructure comparée du spermatozoïde des cestodes relations avec la phylogénèse, Ann. Parasitol. (Paris), Volume 56 (1981), pp. 247-259

[12] Z. Świderski Three types of spermiogenesis in cestodes, Kyoto (1986) (2959-2960)

[13] J.-L. Justine Phylogeny of parasitic Platyhelminthes: a critical study of synapomorphies proposed on the basis of the ultrastructure of spermiogenesis and spermatozoa, Can. J. Zool., Volume 69 (1991), pp. 1421-1440

[14] C.T. Bâ; B. Marchand Spermiogenesis, spermatozoa and phyletic affinities in the Cestoda, Mém. Mus. Natn. Hist. Nat., Volume 166 (1995), pp. 87-95

[15] E.P. Hoberg; J. Mariaux; J.-L. Justine; D.R. Brooks; P.J. Weekes Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: historical perspectives and a new working hypothesis, J. Parasitol., Volume 83 (1997), pp. 1128-1147

[16] J.L. Justine Spermatozoa as phylogenetic characters for the Eucestoda, J. Parasitol., Volume 84 (1998), pp. 385-408

[17] J.L. Justine; Spermatozoa as phylogenetic characters for the Platyhelminthes Interrelationships of the Platyhelminthes (D.T.J. Littlewood; R.A. Bray, eds.), Taylor and Francis, London, UK, 2001, pp. 231-238

[18] E.P. Hoberg; J. Mariaux; D.R. Brooks Phylogeny among orders of the Eucestoda (Cercomeromorphae): integrating morphology molecules total evidence (D.T.J. Littlewood; R.A. Bray, eds.), Interrelationships of the Platyhelminthes, Taylor and Francis, London, UK, 2001, pp. 112-126

[19] C. Levron; J. Miquel; M. Oros; T. Scholz Spermatozoa of tapeworms (Platyhelminthes Eucestoda): advances in ultrastructural and phylogenetic studies, Biol. Rev., Volume 85 (2010), pp. 523-543

[20] G. McKerr, The fine structure and physiology of a trypanorhynch tapeworm Grillotia erinaceus. PhD Thesis, The Queen's University of Belfast, 1985.

[21] Z. Świderski Fine structure of the spermatozoon of Lacistorhynchus tenuis (Cestoda, Trypanorhyncha), Jerusalem (1976) (309-310)

[22] Z. Świderski Spermiogenesis in the Trypanorhynchid Cestode Lacistorhynchus tenuis, Paris (1994) (691-692)

[23] A.M. Marigo; Z. Świderski; C.T. Bâ; J. Miquel Spermiogenesis and ultrastructure of the spermatozoon of the trypanorhynch cestode Aporhynchus menezesi (Aporhynchidae), a parasite of the velvet belly lanternshark Etmopterus spinax (Elasmobranchii: Etmopteridae), Folia Parasitol., Volume 58 (2011), pp. 69-78

[24] J. Miquel; Z. Świderski Ultrastructure of the spermatozoon of Dollfusiella spinulifera (Beveridge and Jones, 2000) Beveridge Neifar and Euzet, 2004 (Trypanorhyncha, Eutetrarhynchidae), Parasitol. Res., Volume 99 (2006), pp. 37-44

[25] J. Miquel; Z. Świderski; L. Neifar; C. Eira Ultrastructure of the spermatozoon of Parachristianella trygonis Dollfus1946 (Trypanorhyncha, Eutetrarhynchidae), J. Parasitol., Volume 93 (2007), pp. 1296-1302

[26] U. Ehlers Phylogenetisches System der Plathelminthes, Verh. Natwiss. Ver. Hambg., Volume 27 (1984), pp. 291-294

[27] Z. Świderski; J.S. Mackiewicz Ultrastructure of spermatogenesis and spermatozoa of the caryophyllidean cestode Glaridacris catostomi Cooper 1920, Acta Parasitol., Volume 47 (2002), pp. 83-104

[28] M. Bruňanská; T. Scholz; B.S. Dezfuli; L.G. Poddubnaya Spermiogenesis and sperm ultrastructure of Cyathocephalus truncatus (Pallas, 1781) Kessler, 1868 (Cestoda: Spathebothriidea), J. Parasitol., Volume 92 (2006), pp. 884-892

[29] C. Levron; M. Bruňanská; L.G. Poddubnaya Spermatological characters in Diphyllobothrium latum (Cestoda Pseudophyllidea), J. Morphol., Volume 267 (2006), pp. 1110-1119

[30] I.S. Gamil Ultrastructural studies of the spermatogenesis and spermiogenesis of the caryophyllidean cestode Wenyonia virilis (Woodland, 1923), Parasitol. Res., Volume 103 (2008), pp. 777-785

[31] M. Bruňanská Spermatological characters of the caryophyllidean cestode Khawia sinensis Hsü, 1935, a carp parasite, Parasitol. Res., Volume 105 (2009), pp. 1603-1610

[32] C. Levron; J. Sítko; T. Scholz Spermiogenesis and spermatozoon of the tapeworm Ligula intestinalis (Diphyllobothriidea): phylogenetic implications, J. Parasitol., Volume 95 (2009), pp. 1-9

[33] M. Bruňanská; L.G. Poddubnaya Spermatological characters of the spathebothriidean tapeworm Didymobothrium rudolphii (Monticelli, 1890), Parasitol. Res., Volume 106 (2010), pp. 1435-1442

[34] A. Yoneva; C. Levron; M. Oros; M. Orosová; T. Scholz Ultrastructure of spermiogenesis and mature spermatozoon of Breviscolex orientalis (Cestoda: Caryophyllidea), Parasitol. Res., Volume 108 (2011), pp. 997-1005

[35] M. Bruňanská; B. Kostič Revisiting caryophyllidean type of spermiogenesis in the Eucestoda based on spermatozoon differentiation and ultrastructure of Caryophyllaeus laticeps (Pallas, 1781), Parasitol. Res., Volume 110 (2012), pp. 141-149

[36] A. Yoneva; C. Levron; A. Ash; T. Scholz Spermatological characters of monozoic tapeworms (Cestoda: Caryophyllidea), including first data on a species from the indomalayan catfish, J. Parasitol., Volume 98 (2012), pp. 423-430

[37] A. Yoneva; C. Levron; M. Oros; M. Orosová; T. Scholz Spermiogenesis and spermatozoon ultrastructure of Hunterella nodulosa (Cestoda: Caryophyllidea), a monozoic parasite of suckers (Catostomidae) in North America, Folia Parasitol., Volume 59 (2012), pp. 179-186

[38] C. Levron, A. Yoneva, M. Kalbe, Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). Acta Zool. (Stockh.).(in press).

[39] J.-L. Justine Ultrastructure of the spermatozoon of the cestode Duthiersia fimbriata (Pseudophyllidea Diphyllobothriidae), Can. J. Zool., Volume 64 (1986), pp. 1545-1548

[40] M. Bruňanská; J. Nebesářová; T. Scholz; H.-P. Fagerholm Ultrastructure of the spermatozoon of the pseudophyllidean cestode Eubothrium crassum (Bloch, 1779), Parasitol. Res., Volume 88 (2002), pp. 285-291

[41] C. Levron; M. Bruňanská; L.G. Poddubnaya Spermatological characters of the pseudophyllidean cestode Bothriocephalus scorpii (Muller, 1781), Parasitol. Int., Volume 55 (2006), pp. 113-120

[42] C.T. Bâ; A. Bâ; B. Marchand Ultrastructure of the spermatozoon of Bothriocephalus claviceps (Cestoda, Pseudophyllidea): a parasite of Anguilla anguilla (Fish Teleostei), Parasitol. Res., Volume 101 (2007), pp. 77-83

[43] M. Bruňanská; V. Matey; J. Nebesářová Ultrastructure of the spermatozoon of the diphyllobothriidean cestode Cephalochlamys namaquensis (Cohn, 1906), Parasitol. Res., Volume 111 (2012), pp. 1037-1043

[44] N. Azzouz-Draoui; F. Mokhtar-Maamouri Ultrastructure comparée de la spermiogenèse et du spermatozoïde de Echinobothrium affine Diesing, 1863 et E. harfordi Mac Vicar, 1976 (Cestoda, Diphyllidea), Bull. Soc. Sci. Nat. Tunis, Volume 18 (1976) no. 1986/88, pp. 9-20

[45] A.M. Marigo; C. Eira; C.T. Bâ; J. Miquel Spermiogenesis and spermatozoon ultrastructure of the diphyllidean cestode Echinobothrium euterpes (Neifar, Tyler and Euzet 2001) Tyler 2006, a parasite of the common guitarfish Rhinobatos rhinobatos, Parasitol. Res., Volume 109 (2011), pp. 809-821

[46] F. Mokhtar-Maamouri; Z. Świderski Étude en microscopie électronique de la spermatogénèse de deux Cestodes Acanthobothrium filicolle benedenii Loennberg 1889 et Onchobothrium uncinatum (Rud., 1819) (Tetraphyllidea, Onchobothriidae), Z. Parasitenkd., Volume 47 (1975), pp. 269-281

[47] F. Mokhtar-Maamouri; Z. Świderski Ultrastructure du spermatozoïde d’un Cestode Tetraphyllidea Phyllobothriidae Echeneibothrium beauchampi Euzet, 1959, Ann. Parasitol. (Paris), Volume 51 (1976), pp. 673-674

[48] F. Mokhtar-Maamouri Étude en microscopie électronique de la spermiogenèse et du spermatozoïde de Phyllobothrium gracile Weld, 1855 (Cestoda Tetraphyllidea, Phyllobothriidae), Z. Parasitenkd., Volume 59 (1979), pp. 245-258

[49] F. Mokhtar-Maamouri Étude ultrastructurale de la spermiogenèse de Acanthobothrium filicolle var. filicolle Zschokke, 1888 (Cestoda Tetraphyllidea, Onchobothriidae), Ann. Parasitol. (Paris), Volume 57 (1982), pp. 429-442

[50] S. Mahendrasingam; I. Fairweather; D.W. Halton Spermatogenesis and the fine structure of the mature spermatozoon in the free proglottis of Trilocularia acanthiaevulgaris (Cestoda Tetraphyllidea), Parasitol. Res., Volume 75 (1989), pp. 287-298

[51] M. Bruňanská; J. Nebesářová; T. Scholz Ultrastructure of the spermatozoon of the proteocephalidean cestode Proteocephalus torulosus (Batsch, 1786), Parasitol. Res., Volume 89 (2003), pp. 345-351

[52] M. Bruňanská; T. Scholz; J. Nebesářová Reinvestigation of the spermatozoon ultrastructure of the cestode Proteocephalus longicollis (Zeder, 1800), a parasite of salmonid fish, Parasitol. Res., Volume 91 (2003), pp. 357-362

[53] M. Bruňanská; T. Scholz; M.H. Ibraheem Ultrastructural particularities of the spermatozoon of the cestode Electrotaenia malopteruri (Fritsch 1886) (Proteocephalidae: Gangesiinae), a parasite of Malapterurus electricus (Siluriformes: Malapteruridae) from the river Nile, Egypt, Parasitol. Res., Volume 93 (2004), pp. 114-120

[54] M. Bruňanská; T. Scholz; M.H. Ibraheem Ultrastructural characters of the spermatozoon of the cestode Corallobothrium solidum Fritsch, 1886 (Cestoda: Proteocephalidea), a parasite of the electric catfish Malapterurus electricus, Parasitol. Res., Volume 94 (2004), pp. 421-426

[55] J. Miquel; C. Feliu; B. Marchand Ultrastructure of spermiogenesis and the spermatozoon of Mesocestoides litteratus (Cestoda Mesocestoididae), Int. J. Parasitol., Volume 29 (1999), pp. 499-510

[56] J. Miquel; C. Eira; Z. Świderski; D.B. Conn Mesocestoides lineatus (Goeze, 1782) (Mesocestoididae): new data on sperm ultrastructure, J. Parasitol., Volume 93 (2007), pp. 545-552


Comments - Policy