Plan
Comptes Rendus

Highly efficient dye-sensitized solar cells using a composite electrolyte
Comptes Rendus. Chimie, Conversion photochimique et stockage de l'énergie solaire, Volume 9 (2006) no. 5-6, pp. 627-630.

Résumés

A dye-sensitized solar cell with efficiency over 4% has been fabricated using a composite electrolyte containing LiI(CH3OH)4–I2, SiO2 particles and an ionic liquid, triethylamine hydrothiocyanate (THT). The ionic liquid is used as a cooperative electrolyte. Nano-sized SiO2 particles act as both an inhibitor of crystal growth of the solid-state electrolyte and an insulator layer between the photoanode and the counter electrode.

Une cellule solaire sensibilisée par un colorant présentant un rendement de conversion de l'énergíe de 4% a été fabriquée en utilisant un électrolyte composite constitué de LiI(CH3OH)4–I2, de particules de SiO2, et de triéthylamine hydrothiocyanate (THT), un liquide ionique. Le liquide ionique est utilisé comme électrolyte support. Les nanoparticules de SiO2 agissent à la fois pour inhiber la croissance de cristaux dans l'électrolyte solide et comme couche isolante entre la photoanode et la contre électrode. Pour citer article : X. Bofei et al., C. R. Chimie 9 (2006).

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2005.05.022
Keywords: Dye-sensitized solar cells (DSSCs), LiI(CH3OH)4–I2, TiO2 film, SiO2 particles, Energy conversion efficiency
Mots-clés : Cellules photovoltaïques sensibilisées par un colorant (DSSCs), LiI(CH3OH)4–I2, Couche de TiO2, Particules de SiO2, Rendement de conversion de l'énergie

Bofei Xue 1 ; Hongxia Wang 1 ; Yongsheng Hu 1 ; Hong Li 1 ; Zaoxiang Wang 1 ; Qingbo Meng 1 ; Xuejie Huang 1 ; Liquan Chen 1 ; Osamu Sato 2 ; Akira Fujishima 2

1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
2 Research Laboratory for Optical Science, Kanagawa Academy of Science and Technology, KSP Bldg. East 412, Sakado, Kawasaki 213-0012, Japan
@article{CRCHIM_2006__9_5-6_627_0,
     author = {Bofei Xue and Hongxia Wang and Yongsheng Hu and Hong Li and Zaoxiang Wang and Qingbo Meng and Xuejie Huang and Liquan Chen and Osamu Sato and Akira Fujishima},
     title = {Highly efficient dye-sensitized solar cells using a composite electrolyte},
     journal = {Comptes Rendus. Chimie},
     pages = {627--630},
     publisher = {Elsevier},
     volume = {9},
     number = {5-6},
     year = {2006},
     doi = {10.1016/j.crci.2005.05.022},
     language = {en},
}
TY  - JOUR
AU  - Bofei Xue
AU  - Hongxia Wang
AU  - Yongsheng Hu
AU  - Hong Li
AU  - Zaoxiang Wang
AU  - Qingbo Meng
AU  - Xuejie Huang
AU  - Liquan Chen
AU  - Osamu Sato
AU  - Akira Fujishima
TI  - Highly efficient dye-sensitized solar cells using a composite electrolyte
JO  - Comptes Rendus. Chimie
PY  - 2006
SP  - 627
EP  - 630
VL  - 9
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crci.2005.05.022
LA  - en
ID  - CRCHIM_2006__9_5-6_627_0
ER  - 
%0 Journal Article
%A Bofei Xue
%A Hongxia Wang
%A Yongsheng Hu
%A Hong Li
%A Zaoxiang Wang
%A Qingbo Meng
%A Xuejie Huang
%A Liquan Chen
%A Osamu Sato
%A Akira Fujishima
%T Highly efficient dye-sensitized solar cells using a composite electrolyte
%J Comptes Rendus. Chimie
%D 2006
%P 627-630
%V 9
%N 5-6
%I Elsevier
%R 10.1016/j.crci.2005.05.022
%G en
%F CRCHIM_2006__9_5-6_627_0
Bofei Xue; Hongxia Wang; Yongsheng Hu; Hong Li; Zaoxiang Wang; Qingbo Meng; Xuejie Huang; Liquan Chen; Osamu Sato; Akira Fujishima. Highly efficient dye-sensitized solar cells using a composite electrolyte. Comptes Rendus. Chimie, Conversion photochimique et stockage de l'énergie solaire, Volume 9 (2006) no. 5-6, pp. 627-630. doi : 10.1016/j.crci.2005.05.022. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2005.05.022/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Recently the dye-sensitized solar cell (DSSC) [1] has attracted much attention around the world due to its high light-to-electricity conversion efficiency (10.4%) and easy fabrication [2]. More importantly, the low cost of DSSC makes it attractive for commercialization. However, the liquid electrolyte is still a “threat” for DSSCs’ practical application because many problems regarding liquid electrolyte remain unresolved, such as solvent evaporation, leakage and deterioration, which causes difficulties in sealing and performance degradation of DSSCs.

Solid-state electrolytes or quasi-solid-state electrolyte such as crystalline p-type semiconductors [3–7], hole-conducting molecular solids and polymers [8–15] and molten salts or ionic liquids [16–21] have been investigated and employed to fabricate DSSCs to substitute the conventional volatile organic solvent-based electrolyte. But most of results turn out to be unsatisfactory because of poor performance of DSSC in practical use.

Some addition compounds formed by LiI and organics have been reported as electrolytes [22–26]. The preparation of LiI(CH3OH)4, a solid-state electrolyte, is very simple and its ionic conductivity is relatively high [22], which indicates its potential use in DSSCs. In our experiments, we use this simple solid-state electrolyte and iodine to form the redox couple in DSSCs. THT is added as cooperative electrolyte to facilitate the filling of LiI(CH3OH)4–I2 into the pores of TiO2 films and SiO2 particles are included to inhibit the crystal growth of LiI(CH3OH)4. Meanwhile, SiO2 particles can form an insulating layer between the TiO2 film and the counter electrode. A high energy conversion efficiency is achieved by using this composite electrolyte in DSSCs.

2 Experimental section

LiI was purchased from Acros and used without further treatment. CH3OH was HPLC grade (Concord Tech, Tianjin, China) and used as received. LiI(CH3OH)4 solid-state electrolyte was prepare by adding CH3OH into LiI powder (LiI/CH3OH = 1:4, molar) in an argon-filled glove box (M. Braun Company). The water content is less than 0.1 ppm. A great amount of heat was released during the reaction of LiI and CH3OH while vigorously stirring and the LiI(CH3OH)4 compound was formed.

The preparation of triethylamine hydrothiocyanate (THT) was described in literature [27] and was added in the electrolyte in the argon-filled glove box.

Three kinds of electrolyte solutions were prepared: (a) 0.6 g LiI(CH3OH)4 and 0.009 g I2 (YiLi Fine Chemicals, Beijing, China, LiI(CH3OH)4/I2 = 100:1, molar) were dissolved in 7.2 ml dimethyl carbonate(DMC, battery grade, PhyLion Co. Ltd. Beijing, China); (b) 0.6 g LiI(CH3OH)4, 0.009 g I2, 0.06 g SiO2 nano-particles (Degussa, particle diameter: 14 nm) were dissolved in 7.2 ml of DMC and then sonicated for 1 h and stirred overnight; (c) 0.6 g LiI(CH3OH)4, 0.009 g I2, 0.06 g SiO2 nano-particles and 0.06 g THT were dissolved in 7.2 ml of DMC and sonicated for 1 h; then stirred overnight. About 0.45 ml of 4-tert-butyl-pyridine (Aldrich) [2,14] was also added into each solution.

The TiO2 porous film deposition on F-doped tin oxide(FTO) conducting glass (12 Ω □–1) and the dye (RuL2(NCS)2·2H2O, L = 2,2′-bipyridyl-4,4′-dicarboxylic acid, Solaronix) adsorption were carried out according to Ref. [2]. The thickness of the TiO2 film we prepared was about 10 μm. The dye-anchored TiO2 film was put on a hot plate at 40 °C. The electrolyte solution was dropped onto the film by a pipet. Then the film was put on the hot plate for 5 min. The solvent (DMC) evaporated quickly and, in order to eliminate the solvent residue, the film was placed in a vacuum chamber for 3 min. The same procedure was repeated several times until an even film of electrolyte was formed on the TiO2 film. Averagely, about 4 mg cm–2 of electrolyte was deposited on the TiO2 film. A platinum-sputtered conducting glass plate was clipped firmly with the TiO2/dye/electrolyte glass plate. A window of 0.18 cm2 was also clipped on the TiO2 side to define the active area of the cell.

The cells were illuminated by an Oriel solar simulator (91192) under AM 1.5 (92 mW cm–2) irradiation. The incident light intensity was measured by a radiant power/energy meter (Oriel 70260). The I–V characteristics of the cells were recorded by a potentiostate/galvanostate (Princeton Applied Research, Model 263A).

3 Results and discussion

Fig. 1a shows the IV curve of the DSSC assembled using only LiI(CH3OH)4–I2. The open-circuit voltage, short-circuit photocurrent density, fill factor and overall efficiency are 0.62 V, 2.8 mA cm–2, 0.58% and 1.1%, respectively. The poor performance of the cell can be ascribed to the large agglomerations of LiI(CH3OH)4 that cannot completely fill into the porous TiO2 films.

Fig. 1

The IV characteristics of dye-sensitized solar cells with electrolytes.

(a) LiI(CH3OH)4–I2.

(b) LiI(CH3OH)4–I2 and SiO2 nano-particles.

(c) LiI(CH3OH)4–I2, THT and SiO2 nano-particles.

Fig. 1b shows the IV curve of the DSSC assembled using LiI(CH3OH)4–I2 and SiO2 particles. The open-circuit voltage, short-circuit photocurrent density, fill factor and overall efficiency are 0.66 V, 4.8 mA cm–2, 0.63% and 2.17%, respectively. As can be seen from the IV curve, the performance of DSSCs is increased remarkably by adding SiO2 particles into the electrolyte. We attribute the great performance improvement to two reasons: one is that the small electrolyte crystals can readily fill the voids of the TiO2 films and have better contact with the dye molecules; Another reason is the thin insulating layer formed by the SiO2 particles, as we observed in the experiments after the TiO2 film was treated in the vacuum chamber, between the two electrodes of the cell, which reduces the possibility of short-circuiting of the cell.

Fig. 1c shows the IV curve of the DSSC assembled using LiI(CH3OH)4–I2, SiO2 particles and THT. The open-circuit voltage, short-circuit photocurrent density, fill factor and overall efficiency are 0.68 V, 9.1 mA cm–2, 0.66% and 4.43%, respectively. By adding SiO2 and THT simultaneously, the energy conversion efficiency is increased by more than 100% compared to those cells using LiI(CH3OH)4–I2–SiO2. We explain this great improvement by the cooperative effect of LiI(CH3OH)4–I2 and THT: when THT is added into the LiI(CH3OH)4–I2–SiO2 system, THT can penetrate into the void left by the LiI(CH3OH)4 crystallites, so the two electrolytes can form continuous phase over the TiO2 films. Thus, the contacts between the electrolyte layer, the dye-anchored TiO2 film and the counter electrode have been improved and the energy conversion efficiency increases accordingly. In our experiments, we find that other ionic liquids have the same effect as THT [26].

4 Conclusions

A DSSC with high-energy conversion efficiency of 4.43% is successfully assembled using a simple solid-state electrolyte, LiI(CH3OH)4, with adding SiO2 and THT at the same time. The two additives improve the interface contacts in the solar cell, which is of vital importance for current collection in DSSCs. The thin insulating layer formed by SiO2 particles also plays an important role in reducing the possibility of short-circuiting of DSSC.

Acknowledgements

We acknowledge the support of the National 863 program of China (Contact No. 2002AA302403), the ‘100-talent’ project of Chinese Academy of Sciences and the New Energy and Industrial Technology Development Organization (NEDO) of Japan.


Bibliographie

[1] B. O’Regan; M. Grätzel Nature, 353 (1991), p. 737

[2] M.K. Nazeeruddin; A. Kay; I. Rodicio; R. Humphry-Baker; E. Müller; P. Liska; N. Vlachopoulos; M. Grätzel J. Am. Chem. Soc., 115 (1993), p. 6382

[3] K. Tennakone; G.R.R.A. Kumara; I.R.M. Kottegoda; K.G.U. Wijayantha; V.P.S. Perera J. Phys. D. Appl. Phys., 31 (1998), p. 1492

[4] G.R.R.A. Kumara; A. Konno; G.K.R. Senadeera; P.V.V. Jayaweera; D.B.R.A. De Silva; K. Tennakone Sol. Energy Mater. Sol. Cells, 69 (2001), p. 195

[5] B. O’Regan; D.T. Schwartz; S.M. Zakeeruddin; M. Grätzel Adv. Mater., 12 (2000), p. 1263

[6] B. O’Regan; D.T. Schwartz J. Appl. Phys., 80 (1996), p. 4749

[7] Q.B. Meng; K. Takahashi; X.T. Zhang; I. Sutanto; T.N. Rao; O. Sato; A. Fujishima; H. Watanabe; T. Nakamori; M. Uragami Langmuir, 19 (2003), p. 3572

[8] Y. Saito; T. Kitamura; Y. Wada; S. Yanagida Synth. Met., 131 (2002), p. 185

[9] M. Matsumoto; H. Miyazaki; K. Matsuhiro; Y. Kumashiro; Y. Takaoka Solid-State Ionics, 89 (1996), p. 263

[10] F. Cao; G. Oskam; P.C. Searson J. Phys. Chem., 99 (1995), p. 17071

[11] K. Murakoshi; R. Kogure; Y. Wada; S. Yanagida Sol. Energy Mater. Sol. Cells, 55 (1998), p. 113

[12] A.F. Nogueira; J.R. Durrant; M.A. DePaoli Adv. Mater., 13 (2001), p. 826

[13] U. Bach; D. Lupo; P. Comte; J.E. Moser; F. Weissörtel; J. Salbeck; H. Spreitzer; M. Grätzel Nature, 395 (1998), p. 583

[14] J. Krüger; R. Plass; L. Cevey; M. Piccirelli; M. Grätzel Appl. Phys. Lett., 79 (2001), p. 2085

[15] G. Katsaros; T. Stergiopoulos; I.M. Arabatzis; K.G. Papadokostaki; P.J. Falaras J. Photochem. Photobiol. A, 149 (2002), p. 191

[16] Y. Shibata; T. Kato; T. Kado; R. Shiratuchi; W. Takashima; K. Kaneto; S. Hayase Chem. Commun. (2003), p. 2730

[17] W. Kubo; T. Kitamura; K. Hanabusa; Y. Wada; S. Yanagida Chem. Commun. (2002), p. 374

[18] E. Stathatos; P. Lianos; S.M. Zakeeruddin; P. Liska; M. Grätzel Chem. Mater., 15 (2003), p. 1825

[19] P. Wang; S.M. Zakeeruddin; I. Exnar; M. Grätzel Chem. Commun. (2002), p. 2972

[20] P. Wang; S.M. Zakeeruddin; P. Comte; I. Exnar; M. Grätzel J. Am. Chem. Soc., 125 (2003), p. 1166

[21] N. Papageorgiou; Y. Athanassov; M. Armand; P. Bonhote; H. Pettersson; A. Azam; M. Grätzel J. Electrochem. Soc., 143 (1996), p. 3099

[22] W. Weppner; W. Welzl; R. Kniep; A. Rabenau Angew. Chem. Int. Ed. Engl., 25 (1986), p. 1087

[23] B. Schoh; E. Hartmann; W. Weppner Solid-State Ionics, 18–19 (1986), p. 529

[24] Y.J. Ran; G.X. Chen; L.Q. Chen J. Sichun University Natural Science Edition, 25 (1988), p. 450

[25] H.X. Wang; B.F. Xue; Y.S. Hu; Z.X. Wang; Q.B. Meng; X.J. Huang; L.Q. Chen Electrochem. Solid-State Lett., 7 (2004), p. A302

[26] B.F. Xue; H.X. Wang; Y.S. Hu; H. Li; Z.X. Wang; Q.B. Meng; X.J. Huang; L.Q. Chen; O. Sato; A. Fujishima Chin. Phys. Lett., 21 (2004), p. 1828

[27] G.R.A. Kumara; S. Kaneko; M. Okuya; K. Tennakone Langmuir, 18 (2002), p. 10493


Cité par

  • Marina T. Laranjo; Natália C. Ricardi; Leliz T. Arenas; Edilson V. Benvenutti; Matheus C. de Oliveira; Silvio Buchner; Marcos J. L. Santos; Tania Maria Haas Costa Influence of ball milling on textural and morphological properties of TiO2 and TiO2/SiO2 xerogel powders applied in photoanodes for solar cells, Journal of Solid State Electrochemistry, Volume 20 (2016) no. 6, p. 1731 | DOI:10.1007/s10008-016-3180-0
  • Yan Yang; Jie Tao; Xin Jin; Qi Qin New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC, International Journal of Photoenergy, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/405738
  • Yang Yan; Tao Jie; Jin Xin; Qin Qi Preparation and characterization of a microporous polymer electrolyte based on poly(vinylidene fluoride)/ionic‐liquid‐functionalized SiO2 for dye‐sensitized solar cells, Journal of Applied Polymer Science, Volume 121 (2011) no. 3, p. 1566 | DOI:10.1002/app.33746
  • Kyung-Hee Park; Hal-Bon Gu; En Mei Jin; Marshal Dhayal Using hybrid silica-conjugated TiO2 nanostructures to enhance the efficiency of dye-sensitized solar cells, Electrochimica Acta, Volume 55 (2010) no. 19, p. 5499 | DOI:10.1016/j.electacta.2010.04.100
  • Muhammad Imran Asghar; Kati Miettunen; Janne Halme; Paula Vahermaa; Minna Toivola; Kerttu Aitola; Peter Lund Review of stability for advanced dye solar cells, Energy Environmental Science, Volume 3 (2010) no. 4, p. 418 | DOI:10.1039/b922801b
  • Seung Yong Lee; Beomjin Yoo; Min Ki Lim; Tae-kyeong Lee; A. R. Sathiya Priya; Kang-Jin Kim Influence of Nylon 6 in I3−/I− Redox Electrolyte on the Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells, Langmuir, Volume 26 (2010) no. 9, p. 6638 | DOI:10.1021/la903951x
  • Yanhong Luo; Dongmei Li; Qingbo Meng Towards Optimization of Materials for Dye‐Sensitized Solar Cells, Advanced Materials, Volume 21 (2009) no. 45, p. 4647 | DOI:10.1002/adma.200901078
  • Dongmei Li; Da Qin; Minghui Deng; Yanhong Luo; Qingbo Meng Optimization the solid-state electrolytes for dye-sensitized solar cells, Energy Environ. Sci., Volume 2 (2009) no. 3, p. 283 | DOI:10.1039/b813378f
  • Chang-Yu Liao; H. Paul Wang; F.-L. Chen; C.-H. Huang; Y. Fukushima; Alan K. T. Lau Applications of Cu@C Nanoparticles in New Dye‐Sensitized Solar Cells, Journal of Nanomaterials, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/698501
  • Yanmin Wang Recent research progress on polymer electrolytes for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, Volume 93 (2009) no. 8, p. 1167 | DOI:10.1016/j.solmat.2009.01.009
  • Fen Luo; Liduo Wang; Beibei Ma; Yong Qiu Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 197 (2008) no. 2-3, p. 375 | DOI:10.1016/j.jphotochem.2008.02.011
  • S. Cerneaux; S. M. Zakeeruddin; J. M. Pringle; Y.‐B. Cheng; M. Grätzel; L. Spiccia Novel Nano‐Structured Silica‐Based Electrolytes Containing Quaternary Ammonium Iodide Moieties, Advanced Functional Materials, Volume 17 (2007) no. 16, p. 3200 | DOI:10.1002/adfm.200700391
  • T.C. Wei; C.C. Wan; Y.Y. Wang Preparation and characterization of a micro-porous polymer electrolyte with cross-linking network structure for dye-sensitized solar cell, Solar Energy Materials and Solar Cells, Volume 91 (2007) no. 20, p. 1892 | DOI:10.1016/j.solmat.2007.07.005
  • Avi Shalav Photovoltaics literature survey (No. 48), Progress in Photovoltaics: Research and Applications, Volume 14 (2006) no. 6, p. 577 | DOI:10.1002/pip.729

Cité par 14 documents. Sources : Crossref


Commentaires - Politique