Plan
Comptes Rendus

Arsenic adsorption onto hematite and goethite
Comptes Rendus. Chimie, Volume 12 (2009) no. 8, pp. 876-881.

Résumés

Surface complexation reactions on mineral affect the fate and the transport of arsenic in environmental systems and the global cycle of this element. In this work, the sorption of As(V) on two commercial iron oxides (hematite and goethite) was studied as a function of different physico-chemical parameters such as pH and ionic strength. The main trend observed in the variation of the arsenic sorbed with the pH is a strong retention in acidic pH and the decrease of the sorption on both sorbents at alkaline pH values. The sorption experiments for these iron oxides show that there is no effect of the ionic strength on arsenate adsorption suggesting the formation of an inner sphere surface complex. At pH values corresponding to natural pH water, both hematite and goethite are able to adsorb more than 80% of arsenic, whatever the initial concentration may be. The iron oxides used in this work should be suitable candidates as sorbents for As(V) removal technologies.

Le comportement de l'arsenic dans l'environnement dépend des interactions avec les phases minérales. Dans ce travail, nous avons étudié l'adsorption de As(V) sur deux oxydes de fer (hématite et goethite) en fonction de différents paramètres physico-chimiques (pH, force ionique). L'adsorption de l'arséniate est dépendante du pH avec une rétention maximale en milieu acide et une diminution de l'adsorption avec l'augmentation du pH pour les deux solides étudiés. Les expériences de sorption montrent que l'adsorption de l'arséniate à la surface de ces oxydes de fer est indépendante de la force ionique de la solution. Ce résultat suggère une adsorption de l'arsenic sous forme de complexe de sphère interne à la surface des oxydes de fer. Ces minéraux présentent des capacités d'adsorption importante vis à vis de l'arsenic pour des valeurs de pH proches de celles rencontrées dans les milieux naturelles.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2008.10.012
Keywords: Arsenate, Adsorption, Iron oxide, Batch experiments
Mots-clés : Arséniate, Adsorption, Oxydes de fer, Expérience en batch

Yannick Mamindy-Pajany 1, 2 ; Charlotte Hurel 1 ; Nicolas Marmier 1 ; Michèle Roméo 2

1 Laboratoire de radiochimie, sciences analytiques et environnement (LRSAE), faculté des sciences, Université de Nice Sophia-Antipolis, bâtiment H. Fizeau, 28, avenue Valrose, 06108 Nice cedex 02, France
2 Laboratoire des ecosystèmes marins côtiers et réponses aux stress (ECOMERS), faculté des sciences, Université de Nice Sophia-Antipolis (ECOMERS/EA 4228), parc Valrose, BP 71 06108 Nice cedex 02, France
@article{CRCHIM_2009__12_8_876_0,
     author = {Yannick Mamindy-Pajany and Charlotte Hurel and Nicolas Marmier and Mich\`ele Rom\'eo},
     title = {Arsenic adsorption onto hematite and goethite},
     journal = {Comptes Rendus. Chimie},
     pages = {876--881},
     publisher = {Elsevier},
     volume = {12},
     number = {8},
     year = {2009},
     doi = {10.1016/j.crci.2008.10.012},
     language = {en},
}
TY  - JOUR
AU  - Yannick Mamindy-Pajany
AU  - Charlotte Hurel
AU  - Nicolas Marmier
AU  - Michèle Roméo
TI  - Arsenic adsorption onto hematite and goethite
JO  - Comptes Rendus. Chimie
PY  - 2009
SP  - 876
EP  - 881
VL  - 12
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crci.2008.10.012
LA  - en
ID  - CRCHIM_2009__12_8_876_0
ER  - 
%0 Journal Article
%A Yannick Mamindy-Pajany
%A Charlotte Hurel
%A Nicolas Marmier
%A Michèle Roméo
%T Arsenic adsorption onto hematite and goethite
%J Comptes Rendus. Chimie
%D 2009
%P 876-881
%V 12
%N 8
%I Elsevier
%R 10.1016/j.crci.2008.10.012
%G en
%F CRCHIM_2009__12_8_876_0
Yannick Mamindy-Pajany; Charlotte Hurel; Nicolas Marmier; Michèle Roméo. Arsenic adsorption onto hematite and goethite. Comptes Rendus. Chimie, Volume 12 (2009) no. 8, pp. 876-881. doi : 10.1016/j.crci.2008.10.012. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2008.10.012/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The maintenance dredging operations for coastal harbours and waterways consist in draining off tons of sediments to improve the ship traffic. In France, 50 million m3 of sediments are dredged each year into the main maritime and commercial ports, and a high amount of these sediments is actually polluted. To manage the dredged materials, a French decree (June 14th 2000) fixed limit concentrations of pollutants allowed in the drained sediments being thrown out into the sea. When the concentrations of pollutants are above the reference levels imposed by the decree, sediments are considered as waste. This implies that they have to be treated before being stored in a specific disposal site. These sediments represent both an economic and an ecological concern.

Among common inorganic pollutants, the metalloïd arsenic (As) has been largely studied because of its potential harmfulness to human health. Arsenic sources in the environment are natural (volcanic emission, minerals) and anthropic (mining activities, combustion of fossil fuels and the use of arsenical pesticides [1,2]). In a natural medium, arsenic is present in four different oxidation states: (−III), (0), (III), and (V). Even if arsenic speciation is strongly influenced by the redox conditions [3], in surface waters, the oxidized forms As(III) and As(V) are the most widespread. In soils, arsenate (As(V)) is the predominant form, under oxidizing conditions [4], whereas in saturated soils or soils with significant amounts of organic matter [5], arsenite (As(III)) is the main form of As, under reducing conditions. The mobility and the toxicity of arsenic depend on its speciation. As(V) species are less soluble and toxic as compared to the reduced form As(III). Arsenic mobility in the environment is dependent on its interaction with metal oxides. The binding of arsenic to different solid phases via surface complexation is well documented in the literature [6,7]. Among the arsenic species, arsenate binds more strongly with the metal oxides of Fe and Mn, as compared to the As(III) species. However, the binding mechanisms are dependent on the pH and redox potential of the environment.

In the case of dredged sediments stored on the ground, As(III) initially present is rapidly oxidized in As(V), within 2 months [8].

Considering the potential risk represented by the mobility of arsenic, mainly physico-chemical and biological treatments have been applied on polluted sediments. The most common are thermal treatment, bio-remediation, washing, solidification/stabilization by hydraulic binders. The process of stabilization/solidification is based on the trapping of contaminants in their matrix. An example of this process is phosphatation that was developed and patented by the Solvay Company. In this process, the sediment is mixed with phosphoric acid H3PO4. The reaction of the calcite, present in the sediment, with this acid leads to the formation of apatite. Heavy metals are trapped and fixed within this mineral [9]. Even if the phosphatation process is efficient for cationic elements, some limitations have been expressed for anionic elements such as As, for example [8].

Studies carried out on soils, lacustrine and marine sediments have shown that As(III) and As(V) were adsorbed on the iron oxide mineralogical phase of the samples [10–12]. For this reason, we propose an immobilization process based on the sorption of As onto the surface of iron oxides as mineral additives, in the context of the stabilization of aerial deposited dredged marine sediments. Preliminarily, the study of the sorption behaviour of As onto iron oxides in the salinity conditions encountered in a marine media is presented here. Indeed, even if a large amount of studies have been carried out considering low salinity, no results are available concerning intermediate to high salinity media. Two commercial iron oxy-hydroxides have been studied here: hematite and goethite. The sorptive behaviour of As was tested under a large range of concentrations, pH values and ionic strength.

2 Materials and methods

2.1 Materials

Sorption experiments of arsenic were conducted onto commercial hematite and goethite. The main physico-chemical properties (Table 1) relative to the reactivity of a mineral powder are: the grain size, the specific surface area, the acid–base surface acidity constants (pKa1 and pKa2) corresponding to the protonation and deprotonation of the surface sites (S–OH is the formalism used to name an oxide surface site), and the point of zero charge (PZC) (i.e. the average of the pKa values).

Table 1

Main physico-chemical properties both iron oxides.

Mineral studiedHematiteGoethite
SupplierJohnson MattheyAldrich
D50 (μm)1053
Specific surface area (m2 g−1)1.66 ± 0.0211.61 ± 0.19
pKa16.38 ± 0.045.69 ± 0.08
pKa29.81 ± 0.078.12 ± 0.08
PZC8.1 ± 0.16.9 ± 0.2

The grain size (D50) was determined by laser granulometer (Mastersizer 2000, Malvern Instruments).

The specific surface area was determined by the Brunauer–Elmet–Teller nitrogen adsorption method (BET–N2).

The pKa values have been determined by acid–base titration for the surface site of hematite and goethite described by the following reactions:

S–OH2+ → S–OH + H+  pKa1
S–OH → S–O + H+  pKa2

Stock As solutions were prepared by diluting a NIST standard solution of 1000 mg As(V) per liter in MilliQ water.

2.2 Sorption experiments

The sorption experiments were conducted at room temperature, using polypropylene tubes. A constant mass of solid (0.2 g) was put in contact with 50 cm3 of arsenate solution at 500 μg of As(V)· L−1 and 70 μg of As(V)· L−1. NaNO3 was used as background electrolyte for all the experiments. Two ionic strengths were studied (0.1 M/0.01 M). The pH of suspension was adjusted to values between 2 and 10 by adding either HNO3 or NaOH (1 M, 0.1 M/0.01 M). On the one hand the sorption of As(V) on hematite and goethite was determined as a function of pH (between 2 and 12) at two ionic strengths and a constant concentration of As(V), on the other hand sorption experiments were carried out as a function of pH and as a function of the initial concentration of As(V).

The tubes were elliptically shaken for 24 h until the adsorption equilibrium was reached. Then, the samples were centrifuged at 3000 rpm for 15 min for hematite and at 3500 rpm for 30 min for goethite and the supernatants were filtered through 0.45 μm pore size acetate filters. Due to the average size of goethite particles (10 μm) the procedure of separation of these particles in the liquid phase required a higher speed and a longer duration of centrifugation than for hematite particles (53 μm).

Arsenic concentration in the supernatants was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP MS – Elan DRC II – Perkin Elmer). The concentration of arsenic sorbed on the solid was calculated by subtracting the final measured concentration to the initial concentration of arsenic introduced in the solution, [As(V)]0. The results are given in percentage of As adsorbed.

%As absorbed=([As]0[As])[As]0×100
The pH of the suspension after the equilibrium time was monitored by a WTW pH meter, with a combined pH electrode, calibrated using buffer solutions at pH 7.01 and 4.00 at room temperature.

3 Results and discussion

All the experiments were conducted for both hematite and goethite, in order to compare the sorption behaviour of As onto these two iron oxy-hydroxides as a function of the initial concentration of As(V), the pH value, and the ionic strength.

3.1 Effect of ionic strength on arsenate adsorption onto hematite and goethite

The removal of arsenate by hematite and goethite for different pH values is shown in Figs. 1 and 2. For both solids, the sorption of As is maximum at acidic pH values and negligible at basic pH values. Considering the PZC values calculated for each solid, one can notice that on one hand when the pH value is inferior to 8.1 for hematite and 6.9 for goethite, the whole amount of As is adsorbed at the surface of the solid considered. On the other hand, for pH values superior to the PZC value of each solid, the whole amount of As remains in the solution.

Fig. 1

Adsorption of arsenate onto hematite at different pH values for two ionic strengths. Experimental conditions: [As(V)] = 500 μg L−1, (m/v) = 4 g L−1.

Fig. 2

Adsorption of arsenate onto goethite at different pH values for two ionic strengths. Experimental conditions: [As(V)] = 500 μg L−1, (m/v) = 4 g L−1.

This trend is observed whatever the ionic strength studied, suggesting that the background salt (NaNO3) used has no effect on arsenate adsorption onto both solids. This behaviour of As at the surface of iron oxy-hydroxides shows that arsenate has a direct chemical bond to the surface, implying a specific sorption mechanism [13,14]. Surface complexation models developed from macroscopic data to predict arsenate adsorption behaviour consider the formation of inner sphere complexes species [15], which is in good accordance with spectroscopic investigations [16,17]. Even if recent spectroscopic studies [18,19] proposed the existence of As(V) outer sphere complexes onto hematite, the experimental conditions used for these measurements (high As concentrations) are not comparable to the trace concentrations encountered in a natural media.

The pH dependence of As adsorption for both solids is usually explained in terms of ionization of both adsorbates (As(V)) and adsorbents (hematite and goethite) [20,21]. For iron oxy-hydroxides, the surface charge occurs by direct proton transfer, since the surface hydroxyl group (S–OH) is amphoteric. Surface ionization (protonation and deprotonation) reactions take place depending on the pH of the solution in contact with the solid. The protonation of the surface (SOH+H+SOH2+) is enhanced under acidic conditions, while its deprotonation (SOHSO+H+) is promoted in alkaline solutions. Arsenate adsorption onto iron oxy-hydroxides is favoured when the surface charge of the mineral is positive (e.g. when the pH value is inferior to the PZC value of the solid considered). For hematite, the surface charge is neutral at pH 8.1, positive at lower pH values and negative at higher pH values. For goethite, the surface charge is neutral at pH 6.9, positive at lower pH values and negative at basic pH values.

According to the arsenic speciation (Fig. 3), two species are predominant for the pH range studied in the experiments (H2AsO4 and HAsO42−). H2AsO4 is predominant for pH values from 2 to 5, while HAsO42− is predominant for pH values from 7 to 10. In the pH range corresponding to the predominance of HAsO42−, the surface of both solids is negative because the pH values are superior to the PZC value. In these conditions, the electrostatic attraction of As toward the surface is not favoured [22,23]. On the other hand, at pH values above the PZC, the surface charge of the solid is positive, thus the electrostatic attraction between the anionic species and the positively charged surface sites is promoted.

Fig. 3

Arsenic speciation, calculated using the hydrochemical equilibrium-constant database (HYDRA).

In Fig. 2, the decrease of arsenate removal by goethite for the ionic strength 0.1 M NaNO3 can be explained by the formation of colloids in alkaline pH conditions. Indeed, metal oxides or metal hydroxides are easily soluble in acidic and strongly basic solutions because of their amphoteric characteristics. The formation of colloid particles during the goethite dissolution in alkaline condition decreases the number of surface sites, decreasing arsenate adsorption.

3.2 Effect of the initial arsenate concentration on adsorption to hematite and goethite

When two initial concentrations of As are considered for both solids (70 μg L−1 and 500 μg L−1) (Figs. 4 and 5), the sorption capacity of each solid can be established. In Table 1, the specific surface area value measured with the BET method for the goethite is higher than for the hematite. This indicates that the concentration of surface sites is higher for goethite than for hematite, implying a sorption capacity of goethite greater than hematite. This observation is confirmed by the results obtained in Figs. 4 and 5. In Fig. 5, the sorption profile of As on goethite is unchanged whatever the initial concentration of As, whereas in Fig. 4 a discrepancy for the sorption profiles of hematite is observed depending on the initial concentration of As. This discrepancy is explained by the partial saturation of the surface sites of goethite by arsenic.

Fig. 4

Adsorption of arsenate onto hematite at different pH values for two concentrations of As(V). Experimental conditions: I = 0.01 M NaNO3, (m/v) = 4 g L−1.

Fig. 5

Adsorption of arsenate onto goethite at different pH values for two concentrations of As(V). Experimental conditions: I = 0.01 M NaNO3, (m/v) = 4 g L−1.

In this part, the results obtained indicate that: (i) in comparison with goethite, hematite is a good adsorbent because the pH range corresponding to the maximum of sorption of As is larger than for goethite; and (ii) the goethite allows an efficient sorption capacity for a larger range of As initial concentration than hematite.

4 Conclusion

In the context of the use of mineral additives for the stabilization of arsenic into dredged sediments, the choice of the mineral should depend on its surface site density, the concentration of arsenic in the sediment and the pH value. This study shows that the adsorption of arsenate on iron oxy-hydroxides depends on the pH value. At pH values corresponding to natural pH water, both hematite and goethite are able to adsorb more than 80% of arsenic, whatever the initial concentration may be. Nevertheless, depending on the contamination rate, the goethite should be selected for the high contamination rate, or the hematite, for the low contamination rate. Depending on the value of the natural media and the contamination rate of the media, the iron oxides used in this work should be suitable candidates as sorbents for As(V) removal technologies. Moreover, these sorbents are naturally abundant and relatively low cost materials.

Acknowledgments

This work was financially supported by the ‘Conseil Général du Var’ by means of the SEDIMARD project and the “Agence de l'eau PACA”.


Bibliographie

[1] S. Wang; C.N. Mulligan Sci. Total Environ., 366 (2006), p. 701

[2] V. Dutre; C. Vandecasteele; S. Opdenakker Hazard. J. Mater., 3 (1999), p. 205

[3] M.L. Pierce; C.B. Moore Water Res., 16 (1982), p. 1247

[4] R. Turpeinen; M. Panstar-Kallio; M. Häggblom; T. Kairesalo Sci. Total Environ., 236 (1999), p. 173

[5] E. Smith; R. Naidu; A.M. Alston Adv. Agron., 64 (1998), p. 149

[6] R. De Vitre; N. Belzile; A. Tessier Limnol. Oceanogr., 36 (1991), p. 1480

[7] A. Jain; K.P. Raven; R.H. Loeppert Environ. Sci. Technol., 33 (1999), p. 1179

[8] UT2A Evolution des métaux et de leurs formes chimiques dans des vases portuaires stockées à terre, 2007 (p. 48)

[9] Z. Lafhaj; A. Saliceto; L. Cohen Solal; Y. Coudray; T. Trung Huynh; B. Le Guen; F. Anguoni Hazard. J. Mater., 148 (2007), p. 606

[10] B.A. Manning; S.E. Fendorf; S. Goldberg Environ. Sci. Technol., 32 (1998), p. 2383

[11] K.A. Sullivan; R.C. Aller Geochim. Cosmochim. Acta, 60 (1996), p. 1465

[12] J.A. Wilkie; J.G. Hering Colloids Surf., A, 107 (1996), p. 97

[13] J. Zheng; H. Hintelmann; B. Dimock; M.S. Dzurko Anal. Bioanal. Chem., 377 (2003), p. 14

[14] K.F. Hayes; C. Papelis; J. Leckie J. Colloid Interface Sci., 125 (1988), p. 717

[15] S. Dixit; J.G. Hering Environ. Sci. Technol., 37 (2003), p. 4182

[16] S. Goldberg; C.T. Johnston J. Colloid Interface Sci., 234 (2001), p. 204

[17] A. Manceau Geochim. Cosmochim. Acta, 59 (1995), p. 3647

[18] D.A. Sverjensky; K. Fukushi Geochim. Cosmochim. Acta, 70 (2006), p. 3778

[19] J.G. Catalano; C. Park; P. Fenter; Z. Zhang Geochim. Cosmochim. Acta, 72 (2008), p. 1986

[20] J. Gimenez; M. Martinez; J. De Pablo; M. Rovira; L. Duro J. Hazard. Mater., 3 (2007), p. 575

[21] T. Yuan; J.Y. Hu; S.L. Ong; Q.F. Luo; W.J. Ng J. Environ. Sci. Health A: Toxic/Hazard. Subst. Environ. Eng., 37 (2002) no. 9, p. 1721

[22] P.H. Masscheleyn; R.D. Dlaune; W.H. Patrick Environ. Sci. Technol., 25 (1991), p. 1414

[23] K.P. Raven; A. Jain; R.H. Loeppert Environ. Sci. Technol., 32 (1998), p. 344


Cité par

  • Audrey Allen; Claire L. McLeod; Liannie C. Velázquez Santana; Maddy Zimmerer; Marion L. Lytle; Ethan Krekeler; Will Amick; Jonathan Tegge; Wilnelly Ventura-Valentín; Jordan Vest; Abigale O’Connor; Barry Shaulis; Landon Stitle; Spencer Snell; Mark P. S. Krekeler Mineralogy and geochemistry of sands from Playa las Golondrinas, Puerto Rico: an approach to establishing a geogenic background, Environmental Earth Sciences, Volume 84 (2025) no. 1 | DOI:10.1007/s12665-024-12010-5
  • Takahiko Arima; Masataka Shimamura; Asumi Sakaguchi; Walubita Mufalo; Carlito Baltazar Tabelin; Toshifumi Igarashi Changes in chemical speciation and mobility of arsenic during the mixing of arsenic-bearing “snow-melting” system effluent and river water in the Ishikari Plain, Japan, Environmental Pollution, Volume 372 (2025), p. 125998 | DOI:10.1016/j.envpol.2025.125998
  • Parviz Holakooei; Morteza Khanipour; Amir-Hossein Karimy Ochre and other pigments from the 7th millennium BC: Evidence from painted objects excavated at Tol-e Sangi and Hormangan archaeological sites in southern Iran, Journal of Archaeological Science: Reports, Volume 62 (2025), p. 105041 | DOI:10.1016/j.jasrep.2025.105041
  • Mohammed Ahmaruzzaman; Saptarshi Roy; Loveleena Khanikar; Mika Sillanpää; Sami Rtimi Magnetic Nanocomposites as Emerging Paradigm for Mitigation of Arsenic from Aqueous Sources, Journal of Inorganic and Organometallic Polymers and Materials, Volume 35 (2025) no. 4, p. 2213 | DOI:10.1007/s10904-024-03422-8
  • Jennifer L. Bjorklund; Logan J. Augustine; Ali Abbaspour Tamijani; Thomas P. Trainor; Anne M. Chaka; Sara E. Mason Modeling Pb(II) Adsorption on Mineral Surfaces: Bridging Density Functional Theory and Experiment with Thermodynamic Insights, The Journal of Physical Chemistry A, Volume 129 (2025) no. 11, p. 2754 | DOI:10.1021/acs.jpca.5c00390
  • Wenbin YU; Zonghua QIN; Lou ZHOU; Shansheng XU; Wenlin YU; Quan WAN Preparation of the MCM-41 supported magnetite nanoparticles and their adsorption characteristics on Cu(II), ACTA MINERALOGICA SINICA, Volume 44 (2024) no. 2, p. 155 | DOI:10.3724/j.1000-4734.2024.44.002
  • Sanchita Chakravarty; Saswati Chakladar; Riya Banerjee Arsenic removal using iron and manganese based adsorbents: scope of utilizing natural resources and waste, Advances in Drinking Water Purification (2024), p. 43 | DOI:10.1016/b978-0-323-91733-9.00003-9
  • Kunchalika Thongmueang; Satika Boonkaewwan; Srilert Chotpantarat Effect of pH on arsenite (As3+) sorption on goethite: Kinetic and equilibrium experiments, Case Studies in Chemical and Environmental Engineering, Volume 9 (2024), p. 100598 | DOI:10.1016/j.cscee.2023.100598
  • Taha Boyraz; Tuğba Türk; İbrahim Alp Hazardous arsenite removal from water by calcined Fe-hydrotalcite, Desalination and Water Treatment, Volume 317 (2024), p. 100111 | DOI:10.1016/j.dwt.2024.100111
  • Md Basit Raza; Siba Prasad Datta; Debasis Golui; Mandira Barman; Prasenjit Ray; Devi Upadhyay; Rahul Mishra; Arkaprava Roy; Amit K. Dash Enhancing soil arsenic immobilization with organic and inorganic amendments: insights from sorption–desorption study, Environmental Monitoring and Assessment, Volume 197 (2024) no. 1 | DOI:10.1007/s10661-024-13492-3
  • Chelsea S. Obeidy; Matthew L. Polizzotto Understanding the influence of soil development on contaminant reactivity along a fluvial chronosequence in the Oregon Coast Range, Geoderma, Volume 442 (2024), p. 116784 | DOI:10.1016/j.geoderma.2024.116784
  • A. Shemi; L. Chipise; C. S. Yah; A. Kumar; S. Moodley; K. Rumbold; G. Simate; S. Ndlovu Optimized Bioleaching Pre-treatment of UG-2 PGM Flotation Concentrate Using Design of Experiments, Journal of Sustainable Metallurgy, Volume 10 (2024) no. 2, p. 525 | DOI:10.1007/s40831-024-00800-x
  • Haojie Qu; Kengbo Ding; Ming Ao; Zekai Ye; Taicong Liu; Zunhe Hu; Yingjie Cao; Jean-Louis Morel; Alan J M Baker; Yetao Tang; Rongliang Qiu; Shizhong Wang New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release, Water Research, Volume 262 (2024), p. 122051 | DOI:10.1016/j.watres.2024.122051
  • Noor E. Hira; Serene Sow Mun Lock; Ushtar Arshad; Khadija Asif; Farman Ullah; Abid Salam Farooqi; Chung Loong Yiin; Bridgid Lai Fui Chin; Zill e Huma Screening of Metal Oxides and Hydroxides for Arsenic Removal from Water Using Molecular Dynamics Simulations, ACS Omega, Volume 8 (2023) no. 50, p. 48130 | DOI:10.1021/acsomega.3c07014
  • Rui Han; Shengtao Wang; Yilin Xu; Zhenxing Wang; Haoquan Yu; Fan Yang Remediation of PO43– and Ni2+ from aqueous solution by novel jarosite: competitive adsorption performance and mechanism, Desalination and Water Treatment, Volume 284 (2023), p. 175 | DOI:10.5004/dwt.2023.29294
  • Jung-Eun Kim; Won Hyun Ji Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage, Economic and Environmental Geology, Volume 56 (2023) no. 4, p. 409 | DOI:10.9719/eeg.2023.56.4.409
  • Stanko Ružičić; Martina Puljko; Tomislav Brenko Spatial and statistical analyses of parameters influencing arsenic distribution in the lowland Drava River area, northeastern Croatia, Environmental Earth Sciences, Volume 82 (2023) no. 17 | DOI:10.1007/s12665-023-11094-9
  • Yuxin Li; Guocheng Lv; Hao Liu; Xin Liu; Libing Liao Improvement of magnetite adsorption performance for Pb (II) by introducing defects, Frontiers in Chemistry, Volume 11 (2023) | DOI:10.3389/fchem.2023.1137246
  • Lei Xu; Liang Tang; Xiaolin Zhang; Zhengmeng Hou; Muhammad Haris; Jiashun Luo; Yuanliang Yang Mine waste water self-purification (arsenic) in neutral hydrogeochemical ecosystem: A case study from V-Ti-Fe mine tailings, Geochemistry, Volume 83 (2023) no. 2, p. 125947 | DOI:10.1016/j.chemer.2022.125947
  • Hamna Bashir; Irshad Bibi; Muhammad Mahroz Hussain; Nabeel Khan Niazi; Jibran Iqbal Nanoparticulate Iron Oxide Minerals for Arsenic Removal from Contaminated Water, Global Arsenic Hazard (2023), p. 459 | DOI:10.1007/978-3-031-16360-9_21
  • Yuika Kawazoe; Kazuma Kimura; Yusei Masaki; Kengo Horiuchi; Takaya Hamai; Naoko Okibe Re-use of passive treatment Fe-sludge for remediation of As-contaminated waters, Hydrometallurgy, Volume 221 (2023), p. 106123 | DOI:10.1016/j.hydromet.2023.106123
  • Sheng Gong; Jingnan Yang; Wenneng Zhou; Xuran Liu; Dongbo Wang Fe-containing materials for inorganic/organic arsenic removal from water: A review of current status and future prospects, Journal of Cleaner Production, Volume 428 (2023), p. 139533 | DOI:10.1016/j.jclepro.2023.139533
  • Muhammad Yousuf Jat Baloch; Chunli Su; Shakeel Ahmed Talpur; Javed Iqbal; Kulvinder Bajwa Arsenic Removal from Groundwater Using Iron Pyrite: Influence Factors and Removal Mechanism, Journal of Earth Science, Volume 34 (2023) no. 3, p. 857 | DOI:10.1007/s12583-022-1698-x
  • Wei Sung Ng; Yanhua Liu; Qiankun Wang; Miao Chen The Fate of the Arsenic Species in the Pressure Oxidation of Refractory Gold Ores: Practical and Modelling Aspects, Mineral Processing and Extractive Metallurgy Review, Volume 44 (2023) no. 2, p. 155 | DOI:10.1080/08827508.2022.2030326
  • Mohammad T. ALSamman; Julio Sánchez Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan, Polymers, Volume 15 (2023) no. 9, p. 2192 | DOI:10.3390/polym15092192
  • Karina Torres-Rivero; Julio Bastos-Arrieta; Antonio Florido; Vicenç Martí Potential Use of Precipitates from Acid Mine Drainage (AMD) as Arsenic Adsorbents, Water, Volume 15 (2023) no. 18, p. 3179 | DOI:10.3390/w15183179
  • Abhishek Kumar; Tanushree Bhattacharya Removal of Arsenic by Wheat Straw Biochar from Soil, Bulletin of Environmental Contamination and Toxicology, Volume 108 (2022) no. 3, p. 415 | DOI:10.1007/s00128-020-03095-2
  • K. Vijayasri; Alka Tiwari Removal of arsenic from contaminated water using radiation-induced grafted chitosan: a critical review, Chemistry and Ecology, Volume 38 (2022) no. 7, p. 671 | DOI:10.1080/02757540.2022.2096012
  • Mohammed Ahmaruzzaman Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater, Environmental Science and Pollution Research, Volume 29 (2022) no. 55, p. 82681 | DOI:10.1007/s11356-022-23357-2
  • Yuanqiong Lin; Xiaoying Jin; Nasreen Islam Khan; Gary Owens; Zuliang Chen Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater, Journal of Environmental Management, Volume 301 (2022), p. 113838 | DOI:10.1016/j.jenvman.2021.113838
  • Naincy Sahu; Ashish Kumar Nayak; Lata Verma; Chandra Bhan; Jiwan Singh; Priyanka Chaudhary; Bal Chandra Yadav Adsorption of As(III) and As(V) from aqueous solution by magnetic biosorbents derived from chemical carbonization of pea peel waste biomass: Isotherm, kinetic, thermodynamic and breakthrough curve modeling studies, Journal of Environmental Management, Volume 312 (2022), p. 114948 | DOI:10.1016/j.jenvman.2022.114948
  • Yajie Wang; Xianhe Gong; Xin Dong; Xiuzhen Tao; Yingchun Luo Arsenite photo-oxidation and removal by ferrihydrite in the presence of oxalate: a pH dependence and surface-mediated process, New Journal of Chemistry, Volume 46 (2022) no. 11, p. 5206 | DOI:10.1039/d1nj05219e
  • L. Santoro; F. Putzolu; N. Mondillo; M. Boni; R. Herrington Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, new data and implications for ore forming processes, Ore Geology Reviews, Volume 140 (2022), p. 104501 | DOI:10.1016/j.oregeorev.2021.104501
  • Saeed BAGHERIFAM; Trevor C. BROWN; Christopher M. FELLOWS; Ravi NAIDU; Sridhar KOMARNENI In situ stabilization of arsenic in soil with organoclay, organozeolite, birnessite, goethite and lanthanum-doped magnetic biochar, Pedosphere, Volume 32 (2022) no. 5, p. 764 | DOI:10.1016/j.pedsph.2022.06.008
  • Adriana Cristina Dias; Maurício Paulo Ferreira Fontes; Matheus da Silva Ferreira; Leonardus Vergütz; Scott Fendorf Residual As(V) in Aqueous Solutions After Its Removal by Synthetic Minerals, Water, Air, Soil Pollution, Volume 233 (2022) no. 4 | DOI:10.1007/s11270-022-05576-y
  • Elena V. Cherkasova; Artem A. Konyshev; Evgeniya A. Soldatova; Evgeniya S. Sidkina; Mikhail V. Mironenko Metal Speciation in Water of the Flooded Mine “Arsenic” (Karelia, Russia): Equilibrium-Kinetic Modeling with a Focus on the Influence of Humic Substances, Aquatic Geochemistry, Volume 27 (2021) no. 2, p. 141 | DOI:10.1007/s10498-021-09393-3
  • J. Ricardo González-Rodríguez; Oscar Rojas-Carrillo; Luis G. Romero-Esquivel Arsenate removal by chitosan iron oxyhydroxide beads: preparation, characterization, and adsorption studies, Desalination and Water Treatment, Volume 220 (2021), p. 142 | DOI:10.5004/dwt.2021.26913
  • Carlos Medina; Jorge Silva Y.; Adrian Rodriguez Methods of Synthesis of Oxides of Iron and Removing Compounds Arsenic in Water, ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., Volume 1 (2021) no. 2, p. 1061 | DOI:10.18502/espoch.v1i2.9532
  • Ji-Hwan Shin; Ji-Yeon Park; Yeongkyoo Kim Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine, Economic and Environmental Geology, Volume 54 (2021) no. 2, p. 299 | DOI:10.9719/eeg.2021.54.2.299
  • Hongwei Chen; Shengyu Lin; Zhengzui Li; Lue Zhao; Runchu Wei; Feng Sheng Comparing arsenic(V) adsorption by two types of red soil weathered from granite and sandstone in Hunan, China, Environmental Earth Sciences, Volume 80 (2021) no. 10 | DOI:10.1007/s12665-021-09683-7
  • Jiancong Liu; Yanwen Liu; Zhonglei Zhang; Xiaoshu Wang; Ying Wang; Jia Zhu; Ming Chang; Lei Wang Transformation of Schwertmannite to erdite nanorod via an alkaline dissolution–recrystallization process for the effective adsorption of oxytetracycline, Functional Materials Letters, Volume 14 (2021) no. 07 | DOI:10.1142/s1793604721430074
  • Manisha Maharana; Madhumita Manna; Moumita Sardar; Sujit Sen Heavy Metal Removal by Low-Cost Adsorbents, Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water, Volume 49 (2021), p. 245 | DOI:10.1007/978-3-030-47400-3_10
  • Tiantian Luo; Chao Yang; Xike Tian; Wenjun Luo; Yulun Nie; Yanxin Wang Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (2021), p. 1 | DOI:10.1007/978-3-030-11155-7_76-1
  • Tiantian Luo; Chao Yang; Xike Tian; Wenjun Luo; Yulun Nie; Yanxin Wang Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (2021), p. 2067 | DOI:10.1007/978-3-030-36268-3_76
  • Hoang Thu Ha; Pham Tuan Phong; Tran Dinh Minh; Krishna Verma Synthesis of Iron Oxide Nanoparticle Functionalized Activated Carbon and Its Applications in Arsenic Adsorption, Journal of Analytical Methods in Chemistry, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/6668490
  • Yajie Wang; Xianhe Gong; Xin Dong; Yunjie Wu Arsenite removal in a goethite/oxalate system under UVA irradiation: Roles of different reactive species in acidic and neutral conditions, Journal of Molecular Structure, Volume 1245 (2021), p. 131065 | DOI:10.1016/j.molstruc.2021.131065
  • Andrew J. Martin; Iain McDonald; Katie A. McFall; Christopher J. MacLeod; Hazel M. Prichard Low-temperature silica-rich gold mineralization in mafic VMS systems: evidence from the Troodos ophiolite, Cyprus, Mineralium Deposita, Volume 56 (2021) no. 4, p. 805 | DOI:10.1007/s00126-020-01007-2
  • V.R. Moreira; Y.A.R. Lebron; L.V.S. Santos; E. Coutinho de Paula; M.C.S. Amaral Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes, Process Safety and Environmental Protection, Volume 148 (2021), p. 604 | DOI:10.1016/j.psep.2020.11.033
  • Avni Jain; Sonu Kumari; Swati Agarwal; Suphiya Khan Water purification via novel nano-adsorbents and their regeneration strategies, Process Safety and Environmental Protection, Volume 152 (2021), p. 441 | DOI:10.1016/j.psep.2021.06.031
  • Cecília Calhau Almeida; Maurício Paulo Ferreira Fontes; Adriana Cristina Dias; Thiago Torres Costa Pereira; João Carlos Ker Adsorption and desorption of arsenic and its immobilization in soils, Scientia Agricola, Volume 78 (2021) no. 3 | DOI:10.1590/1678-992x-2018-0368
  • Elizabeth C. Pastrana; Steveen J. Loarte; Carlos D. Gonzales-Lorenzo; Roxana Y.P. Alta; Hugo A. Alarcón Fabrication and characterization of copper (II) oxide/iron (III) oxide thin film heterostructures for trace arsenic (III) removal in water, Thin Solid Films, Volume 717 (2021), p. 138440 | DOI:10.1016/j.tsf.2020.138440
  • Xiaoqing Meng; Chunmei Zhang; Jing Zhuang; Guanyu Zheng; Lixiang Zhou Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction, Chemosphere, Volume 244 (2020), p. 125523 | DOI:10.1016/j.chemosphere.2019.125523
  • Yujie Zhao; Min Xiao; Shan Zhao; Hongtao Fan Enhanced adsorption of As(V) from aqueous solution by mesoporous goethite: kinetics, isotherms, thermodynamics, and mechanism, Desalination and Water Treatment, Volume 201 (2020), p. 250 | DOI:10.5004/dwt.2020.25879
  • Vishnu Manirethan; Keyur Raval; Raj Mohan Balakrishnan Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri, Environmental Pollution, Volume 257 (2020), p. 113576 | DOI:10.1016/j.envpol.2019.113576
  • Matheus Sampaio C. Barreto; Evert J. Elzinga; Luís Reynaldo F. Alleoni Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid, Environmental Pollution, Volume 262 (2020), p. 114196 | DOI:10.1016/j.envpol.2020.114196
  • Afanasy V. Lunin; Ilya L. Sokolov; Ivan V. Zelepukin; Ilya V. Zubarev; Maria N. Yakovtseva; Elizaveta N. Mochalova; Julian M. Rozenberg; Maxim P. Nikitin; Eugene L. Kolychev Spindle-like MRI-active europium-doped iron oxide nanoparticles with shape-induced cytotoxicity from simple and facile ferrihydrite crystallization procedure, RSC Advances, Volume 10 (2020) no. 12, p. 7301 | DOI:10.1039/c9ra10683a
  • Yifan Huang; Minling Gao; Yingxuan Deng; Zulqarnain Haider Khan; Xuewei Liu; Zhengguo Song; Weiwen Qiu Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar, Science of The Total Environment, Volume 715 (2020), p. 136957 | DOI:10.1016/j.scitotenv.2020.136957
  • Xiaoxiao Hao; HongGuang Sun; Yong Zhang; Shiyin Li; Jia Song; Kate Salsky Hausdorff Fractal Derivative Model to Characterize Transport of Inorganic Arsenic in Porous Media, Water, Volume 12 (2020) no. 9, p. 2353 | DOI:10.3390/w12092353
  • Miyeon Lee; Yongtae Ahn; Kalimuthu Pandi; Ho Young Jo; Jaeyoung Choi Sorption of Bioavailable Arsenic on Clay and Iron Oxides Elevates the Soil Microbial Activity, Water, Air, Soil Pollution, Volume 231 (2020) no. 8 | DOI:10.1007/s11270-020-04784-8
  • Jeffrey Paulo H. Perez; Dominique J. Tobler; Andrew N. Thomas; Helen M. Freeman; Knud Dideriksen; Jörg Radnik; Liane G. Benning Adsorption and Reduction of Arsenate during the Fe2+-Induced Transformation of Ferrihydrite, ACS Earth and Space Chemistry, Volume 3 (2019) no. 6, p. 884 | DOI:10.1021/acsearthspacechem.9b00031
  • Nicy Ajith; K.K. Swain Study on the performance and interaction of different synthetic iron oxides for arsenic uptake using 76As radiotracer, Applied Radiation and Isotopes, Volume 153 (2019), p. 108807 | DOI:10.1016/j.apradiso.2019.108807
  • Mehwish Taneez; Charlotte Hurel A review on the potential uses of red mud as amendment for pollution control in environmental media, Environmental Science and Pollution Research, Volume 26 (2019) no. 22, p. 22106 | DOI:10.1007/s11356-019-05576-2
  • M. Lebon; X. Gallet; M. Bondetti; S. Pont; G. Mauran; P. Walter; L. Bellot-Gurlet; S. Puaud; A. Zazzo; H. Forestier; P. Auetrakulvit; V. Zeitoun Characterization of painting pigments and ochres associated with the Hoabinhian archaeological context at the rock-shelter site of Doi Pha Kan (Thailand), Journal of Archaeological Science: Reports, Volume 26 (2019), p. 101855 | DOI:10.1016/j.jasrep.2019.05.020
  • Shengsen Wang; Mingyue Zhao; Min Zhou; Yuncong C. Li; Jun Wang; Bin Gao; Shinjiro Sato; Ke Feng; Weiqin Yin; Avanthi Deshani Igalavithana; Patryk Oleszczuk; Xiaozhi Wang; Yong Sik Ok Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review, Journal of Hazardous Materials, Volume 373 (2019), p. 820 | DOI:10.1016/j.jhazmat.2019.03.080
  • Jose Luis Alvarez-Cruz; Sofia Esperanza Garrido-Hoyos Effect of the mole ratio of Mn/Fe composites on arsenic (V) adsorption, Science of The Total Environment, Volume 668 (2019), p. 47 | DOI:10.1016/j.scitotenv.2019.02.234
  • Akihide Kamata; Masahiko Katoh Arsenic release from marine sedimentary rock after excavation from urbanized coastal areas: Oxidation of framboidal pyrite and subsequent natural suppression of arsenic release, Science of The Total Environment, Volume 670 (2019), p. 752 | DOI:10.1016/j.scitotenv.2019.03.217
  • Josselin Gorny; David Dumoulin; Véronique Alaimo; Ludovic Lesven; Catherine Noiriel; Benoît Madé; Gabriel Billon Passive sampler measurements of inorganic arsenic species in environmental waters: A comparison between 3-mercapto-silica, ferrihydrite, Metsorb®, zinc ferrite, and zirconium dioxide binding gels, Talanta, Volume 198 (2019), p. 518 | DOI:10.1016/j.talanta.2019.01.127
  • Md. Arsh Alam; Wasim Akram Shaikh; Md. Osaid Alam; Tanushree Bhattacharya; Sukalyan Chakraborty; Bibhutibhushan Show; Indranil Saha Adsorption of As (III) and As (V) from aqueous solution by modified Cassia fistula (golden shower) biochar, Applied Water Science, Volume 8 (2018) no. 7 | DOI:10.1007/s13201-018-0839-y
  • Junbo Wang; Jing Xu; Jun Xia; Feng Wu; Yanjun Zhang A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension, Chemical Geology, Volume 495 (2018), p. 67 | DOI:10.1016/j.chemgeo.2018.08.003
  • Andrew W. Bray; Douglas I. Stewart; Ronan Courtney; Simon P. Rout; Paul N. Humphreys; William M. Mayes; Ian T. Burke Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment, Environmental Science Technology, Volume 52 (2018) no. 1, p. 152 | DOI:10.1021/acs.est.7b03568
  • Erika Di Iorio; Hyen Goo Cho; Ying Liu; Zhongqi Cheng; Ruggero Angelico; Claudio Colombo Arsenate retention mechanisms on hematite with different morphologies evaluated using AFM, TEM measurements and vibrational spectroscopy, Geochimica et Cosmochimica Acta, Volume 237 (2018), p. 155 | DOI:10.1016/j.gca.2018.06.027
  • Yasinta John; Victor Emery David; Daniel Mmereki A Comparative Study on Removal of Hazardous Anions from Water by Adsorption: A Review, International Journal of Chemical Engineering, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/3975948
  • R.A. Pepper; S.J. Couperthwaite; G.J. Millar A novel akaganeite sorbent synthesised from waste red mud: Application for treatment of arsenate in aqueous solutions, Journal of Environmental Chemical Engineering, Volume 6 (2018) no. 5, p. 6308 | DOI:10.1016/j.jece.2018.09.036
  • Kardia Ramirez-Muñiz; Fátima Perez-Rodriguez; Rene Rangel-Mendez Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite, Journal of Molecular Liquids, Volume 264 (2018), p. 253 | DOI:10.1016/j.molliq.2018.05.063
  • F. Pallottino; S.R. Stazi; A. D’Annibale; R. Marabottini; E. Allevato; F. Antonucci; C. Costa; M.C. Moscatelli; P. Menesatti Rapid assessment of As and other elements in naturally-contaminated calcareous soil through hyperspectral VIS-NIR analysis, Talanta, Volume 190 (2018), p. 167 | DOI:10.1016/j.talanta.2018.07.082
  • S. Swapna Priya; K. V. Radha A Review on the Adsorption Studies of Tetracycline onto Various Types of Adsorbents, Chemical Engineering Communications, Volume 204 (2017) no. 8, p. 821 | DOI:10.1080/00986445.2015.1065820
  • Mohammad Kashif Uddin A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chemical Engineering Journal, Volume 308 (2017), p. 438 | DOI:10.1016/j.cej.2016.09.029
  • Xiaoliang Liang; Gaoling Wei; Juan Xiong; Fuding Tan; Hongping He; Chenchen Qu; Hui Yin; Jianxi Zhu; Runliang Zhu; Zonghua Qin; Jing Zhang Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals, Chemical Geology, Volume 470 (2017), p. 132 | DOI:10.1016/j.chemgeo.2017.09.003
  • Marco Tagliabue; Roberto Bagatin; Alessandro Conte; Annalisa Congiu; Sara Perucchini; Stefano Zanardi; Michela Bellettato; Angela Carati Metal-rich sludge from mine water treatment: from waste to effective arsenate adsorbent, Desalination and Water Treatment, Volume 69 (2017), p. 294 | DOI:10.5004/dwt.2017.0664
  • Adrián Ortega-Guerrero Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico, Environmental Geochemistry and Health, Volume 39 (2017) no. 5, p. 987 | DOI:10.1007/s10653-016-9866-5
  • Anita Parbhakar-Fox; Julie Hunt; Bernd Lottermoser; Eleanor M. van Veen; Nathan Fox Prediction of Leachate Quality for a Gossan Dump, Angostura, Spain, Environmental Indicators in Metal Mining (2017), p. 221 | DOI:10.1007/978-3-319-42731-7_13
  • Jonathan B. Burkhardt; Jeff Szabo; Stephen Klosterman; John Hall; Regan Murray Modeling fate and transport of arsenic in a chlorinated distribution system, Environmental Modelling Software, Volume 93 (2017), p. 322 | DOI:10.1016/j.envsoft.2017.03.016
  • Martin E. McBriarty; Jennifer A. Soltis; Sebastien Kerisit; Odeta Qafoku; Mark E. Bowden; Eric J. Bylaska; James J. De Yoreo; Eugene S. Ilton Trace Uranium Partitioning in a Multiphase Nano-FeOOH System, Environmental Science Technology, Volume 51 (2017) no. 9, p. 4970 | DOI:10.1021/acs.est.7b00432
  • Hongwei Chen; Jinhua Mei; Yueping Luo; Anni Qiu; Huan Wang Adsorptive properties of alluvial soil for arsenic(V) and its potential for protection of the shallow groundwater among Changsha, Zhuzhou, and Xiangtan cities, China, Environmental Science and Pollution Research, Volume 24 (2017) no. 4, p. 4018 | DOI:10.1007/s11356-016-8150-7
  • Shengsen Wang; Bin Gao; Yuncong Li; Anne Elise Creamer; Feng He Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests, Journal of Hazardous Materials, Volume 322 (2017), p. 172 | DOI:10.1016/j.jhazmat.2016.01.052
  • Tamil S. Sakthivel; Soumen Das; Cameron J. Pratt; Sudipta Seal One-pot synthesis of a ceria–graphene oxide composite for the efficient removal of arsenic species, Nanoscale, Volume 9 (2017) no. 10, p. 3367 | DOI:10.1039/c6nr07608d
  • Prabhat Parida; Mayura Lolage; Ashwini Angal; Debabrata Rautaray Iron Oxide Nanoparticles to Remove Arsenic from Water, Nanoscience in Food and Agriculture 4, Volume 24 (2017), p. 279 | DOI:10.1007/978-3-319-53112-0_10
  • Jian-Long Hu; Xiao-Song Yang; Ting Liu; Li-Nan Shao; Wang Zhang Adsorption characteristic of As(III) on goethite waste generated from hydrometallurgy of zinc, Water Science and Technology, Volume 75 (2017) no. 12, p. 2747 | DOI:10.2166/wst.2017.101
  • Irma Lia Botto; Simonetta Tuti; María Jose Gonzalez; Delia Gazzoli Correlation between Iron Reducibility in Natural and Iron-Modified Clays and Its Adsorptive Capability for Arsenic Removal, Advances in Materials Physics and Chemistry, Volume 06 (2016) no. 05, p. 129 | DOI:10.4236/ampc.2016.65014
  • Guobao Chen; Zhangfu Zhu; Yong Qin Synthesis of Pure Micro- and Nanopyrite and Their Application for As (III) Removal from Aqueous Solution, Advances in Materials Science and Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/6290420
  • T. L. Noble; B. G. Lottermoser; A. T. Townsend Mobility of arsenic and environmentally significant elements in mine tailings following liming, Australian Journal of Earth Sciences, Volume 63 (2016) no. 6, p. 781 | DOI:10.1080/08120099.2016.1249955
  • Nguyen Thi Vuong Hoan; Nguyen Thi Anh Thu; Hoang Van Duc; Nguyen Duc Cuong; Dinh Quang Khieu; Vien Vo Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal, Journal of Chemistry, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/2418172
  • Sineephan Thanawatpoontawee; Apichat Imyim; Narong Praphairaksit Iron-loaded zein beads as a biocompatible adsorbent for arsenic(V) removal, Journal of Industrial and Engineering Chemistry, Volume 43 (2016), p. 127 | DOI:10.1016/j.jiec.2016.07.058
  • Maryam (Roza) Yazdani; Tanja Tuutijärvi; Amit Bhatnagar; Riku Vahala Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption, Journal of Molecular Liquids, Volume 214 (2016), p. 149 | DOI:10.1016/j.molliq.2015.12.002
  • Won-Hee Lee; Han-Su Lim; Jong-Oh Kim Fabrication of Iron Oxide Nanotubes by Anodization for Phosphorus Adsorption in Water, Journal of the Korean Society of Water and Wastewater, Volume 30 (2016) no. 6, p. 691 | DOI:10.11001/jksww.2016.30.6.691
  • M. El Adnani; B. Plante; M. Benzaazoua; R. Hakkou; H. Bouzahzah Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco, Mine Water and the Environment, Volume 35 (2016) no. 4, p. 508 | DOI:10.1007/s10230-015-0370-4
  • L.Yu. Novoselova Hematite nanopowder obtained from waste: Iron-removal sludge, Powder Technology, Volume 287 (2016), p. 364 | DOI:10.1016/j.powtec.2015.10.020
  • Yao Ma; Bowu Zhang; Hongjuan Ma; Ming Yu; Linfan Li; Jingye Li Electrospun nanofibrous polyethylenimine mat: a potential adsorbent for the removal of chromate and arsenate from drinking water, RSC Advances, Volume 6 (2016) no. 36, p. 30739 | DOI:10.1039/c5ra26973c
  • N.E. Nieva; L. Borgnino; F. Locati; M.G. García Mineralogical control on arsenic release during sediment–water interaction in abandoned mine wastes from the Argentina Puna, Science of The Total Environment, Volume 550 (2016), p. 1141 | DOI:10.1016/j.scitotenv.2016.01.147
  • Petr Drahota; Magdaléna Knappová; Helena Kindlová; Adam Culka; Juraj Majzlan; Martin Mihaljevič; Jan Rohovec; František Veselovský; Michaela Fridrichová; Jan Jehlička Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic, Science of The Total Environment, Volume 557-558 (2016), p. 192 | DOI:10.1016/j.scitotenv.2016.03.079
  • Hongwei Chen; Lin Liu; Rouyan Gong; Runchu Wei; Qiaohui Yi; Anni Qiu Comparison of Kinetics of Arsenic(V) Adsorption on Two Types of Red Soil Weathered from Granite and Sandstone, Water, Air, Soil Pollution, Volume 227 (2016) no. 11 | DOI:10.1007/s11270-016-3107-5
  • Hossein Boojari; Mahdi Pourafshari Chenar; Majid Pakizeh Experimental Investigation of Arsenic (III, V) Removal from Aqueous Solution Using Synthesized α-Fe2O3/MCM-41 Nanocomposite Adsorbent, Water, Air, Soil Pollution, Volume 227 (2016) no. 8 | DOI:10.1007/s11270-016-2989-6
  • M. Camino Martín-Torre; M. Cruz Payán; Bram Verbinnen; Alberto Coz; Gema Ruiz; Carlo Vandecasteele; Javier R. Viguri Metal Release from Contaminated Estuarine Sediment Under pH Changes in the Marine Environment, Archives of Environmental Contamination and Toxicology, Volume 68 (2015) no. 3, p. 577 | DOI:10.1007/s00244-015-0133-z
  • Katherine Vaca-Escobar; Mario Villalobos; Teresa Pi-Puig; Rodolfo Zanella Approaching the geochemical complexity of As(V)-contaminated systems through thermodynamic modeling, Chemical Geology, Volume 410 (2015), p. 162 | DOI:10.1016/j.chemgeo.2015.06.007
  • Nidia A. Morales; David Martínez; J. Viridiana García-Meza; Israel Labastida; Ma. Aurora Armienta; Israel Razo; René H. Lara Total and bioaccessible arsenic and lead in soils impacted by mining exploitation of Fe-oxide-rich ore deposit at Cerro de Mercado, Durango, Mexico, Environmental Earth Sciences, Volume 73 (2015) no. 7, p. 3249 | DOI:10.1007/s12665-014-3617-7
  • X. Z. Shi; D. Oldmeadow; M. Aspandiar Observations on mineral transformations and potential environmental consequences during the oxidation of iron sulphide‐rich materials in incubation experiments, European Journal of Soil Science, Volume 66 (2015) no. 3, p. 393 | DOI:10.1111/ejss.12232
  • R. Attinti; D. Sarkar; K. R. Barrett; R. Datta Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite, International Journal of Environmental Science and Technology, Volume 12 (2015) no. 12, p. 3905 | DOI:10.1007/s13762-015-0902-2
  • Hirokazu Okawa; Tomohiro Yoshikawa; Ryota Hosokawa; Shinji Hangui; Youhei Kawamura; Katsuyasu Sugawara Removal of arsenious acid from sulfuric acidic solution using ultrasound oxidation and goethite, Japanese Journal of Applied Physics, Volume 54 (2015) no. 7S1, p. 07HE17 | DOI:10.7567/jjap.54.07he17
  • Guangcheng Yang; Yanyan Liu; Shaoxian Song Competitive adsorption of As(V) with co-existing ions on porous hematite in aqueous solutions, Journal of Environmental Chemical Engineering, Volume 3 (2015) no. 3, p. 1497 | DOI:10.1016/j.jece.2015.05.011
  • María J. González; Lia Botto; María E. Canafoglia; Laura Coccaro; Edgardo Soto Iron-Modification of Pyroclastic Material from PCCVC Eruption (Chile): Characterization and Application to Remove Arsenic from Groundwater, Journal of Environmental Protection, Volume 06 (2015) no. 10, p. 1124 | DOI:10.4236/jep.2015.610099
  • Chang Luo; Yawei Xie; Fang Li; Tao Jiang; Qiang Wang; Zhenmao Jiang; Shiqiang Wei Adsorption of Arsenate on Iron Oxides as Influenced by Humic Acids, Journal of Environmental Quality, Volume 44 (2015) no. 6, p. 1729 | DOI:10.2134/jeq2014.11.0491
  • Muhammad Rahim; Mas Rosemal Hakim Mas Haris Application of biopolymer composites in arsenic removal from aqueous medium: A review, Journal of Radiation Research and Applied Sciences, Volume 8 (2015) no. 2, p. 255 | DOI:10.1016/j.jrras.2015.03.001
  • Pavle I. Premović Cretaceous-Paleogene Boundary Clays from Spainand New Zealand: Arsenic Anomalies, Open Geosciences, Volume 7 (2015) no. 1 | DOI:10.1515/geo-2015-0052
  • Shengsen Wang; Bin Gao; Yuncong Li; Yongshan Wan; Anne Elise Creamer Sorption of arsenate onto magnetic iron–manganese (Fe–Mn) biochar composites, RSC Advances, Volume 5 (2015) no. 83, p. 67971 | DOI:10.1039/c5ra12137j
  • Linda Ansone; Maris Klavins; Maruta Jankevica; Arturs Viksna Biomass sorbents for metalloid removal, Adsorption, Volume 20 (2014) no. 2-3, p. 275 | DOI:10.1007/s10450-013-9594-4
  • Eva Kumar; Amit Bhatnagar; William Hogland; Marcia Marques; Mika Sillanpää Interaction of inorganic anions with iron-mineral adsorbents in aqueous media — A review, Advances in Colloid and Interface Science, Volume 203 (2014), p. 11 | DOI:10.1016/j.cis.2013.10.026
  • Farheen Khan; Rizwan Wahab Nanomaterials with Uniform Composition in Wastewater Treatment and Their Applications, Application of Nanotechnology in Water Research (2014), p. 475 | DOI:10.1002/9781118939314.ch17
  • Ünzile Yenial; Gülay Bulut; Ayhan Ali Sirkeci Arsenic Removal by Adsorptive Flotation Methods, CLEAN – Soil, Air, Water, Volume 42 (2014) no. 11, p. 1567 | DOI:10.1002/clen.201300438
  • N. S. Randhawa; Nisha Murmu; Shakuntala Tudu; D. C. Sau Iron oxide waste to clean arsenic-contaminated water, Environmental Chemistry Letters, Volume 12 (2014) no. 4, p. 517 | DOI:10.1007/s10311-014-0477-z
  • Gülay Bulut; Ünzile Yenial; Emrecan Emiroğlu; Ayhan Ali Sirkeci Arsenic removal from aqueous solution using pyrite, Journal of Cleaner Production, Volume 84 (2014), p. 526 | DOI:10.1016/j.jclepro.2013.08.018
  • Anna Corsini; Patrizia Zaccheo; Gerard Muyzer; Vincenza Andreoni; Lucia Cavalca Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal, Journal of Hazardous Materials, Volume 269 (2014), p. 89 | DOI:10.1016/j.jhazmat.2013.12.037
  • Lei Chen; Hongchuan Xin; Yuan Fang; Cong Zhang; Feng Zhang; Xing Cao; Chunhui Zhang; Xuebing Li; Xiang Wu Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water, Journal of Nanomaterials, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/793610
  • Soumya Das; Joseph Essilfie-Dughan; M. Jim Hendry Arsenate adsorption onto hematite nanoparticles under alkaline conditions: effects of aging, Journal of Nanoparticle Research, Volume 16 (2014) no. 7 | DOI:10.1007/s11051-014-2490-3
  • Kaoru Ohe; Tatsuya Oshima; Yoshinari Baba Effect of Ionic Strength, Temperature on Equilibrium and Kinetics of Arsenic Adsorption using Magnetite, KAGAKU KOGAKU RONBUNSHU, Volume 40 (2014) no. 2, p. 90 | DOI:10.1252/kakoronbunshu.40.90
  • Feifei Jia; Kardia Ramirez-Muñiz; Shaoxian Song Preparation and Characterization of Porous Hematite through Thermal Decomposition of a Goethite Concentrate, Mineral Processing and Extractive Metallurgy Review, Volume 35 (2014) no. 3, p. 193 | DOI:10.1080/08827508.2012.738730
  • Linlin Hao; Tong Ouyang; Limin Lai; Yao-Xing Liu; Shanshan Chen; Hongyou Hu; Chang-Tang Chang; Juan-Juan Wang Temperature effects on arsenate adsorption onto goethite and its preliminary application to arsenate removal from simulative geothermal water, RSC Adv., Volume 4 (2014) no. 94, p. 51984 | DOI:10.1039/c4ra08318k
  • Shuqiong Kong; Yanxin Wang; Hongbin Zhan; Songhu Yuan; Mei Yu; Mingliang Liu Adsorption/Oxidation of Arsenic in Groundwater by Nanoscale Fe‐Mn Binary Oxides Loaded on Zeolite, Water Environment Research, Volume 86 (2014) no. 2, p. 147 | DOI:10.2175/106143013x13807328849170
  • Ruijiang Liu; Xiangqian Shen; Hongxia Li; Xinai Zhang; Liwei Wang Performances of Methyl Blue and Arsenic(V) Adsorption from Aqueous Solution onto Magnetic 0.8Ni0.5Zn0.5Fe2O4/0.2SiO2 Nanocomposites, Water, Air, Soil Pollution, Volume 225 (2014) no. 5 | DOI:10.1007/s11270-014-1973-2
  • Johan Mähler; Ingmar Persson Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide, Applied Geochemistry, Volume 37 (2013), p. 179 | DOI:10.1016/j.apgeochem.2013.07.025
  • Eric Arifin; Jinmyung Cha; Jin-Kyu Lee Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study, Bulletin of the Korean Chemical Society, Volume 34 (2013) no. 8, p. 2358 | DOI:10.5012/bkcs.2013.34.8.2358
  • Seong Hee Kim; Jeong Woo Seol; Woo Chun Lee; Soon-Oh Kim Removal of Aqueous Arsenic Via Adsorption onto Si Slag, Economic and Environmental Geology, Volume 46 (2013) no. 6, p. 521 | DOI:10.9719/eeg.2013.46.6.521
  • Yannick Mamindy-Pajany; Florence Geret; Charlotte Hurel; Nicolas Marmier Batch and column studies of the stabilization of toxic heavy metals in dredged marine sediments by hematite after bioremediation, Environmental Science and Pollution Research, Volume 20 (2013) no. 8, p. 5212 | DOI:10.1007/s11356-013-1510-7
  • Zhongwei Zhao; Wenjuan Shuai; Jialiang Zhang; Xingyu Chen Sn(IV) anions adsorption onto ferric hydroxide: A speciation-based model, Hydrometallurgy, Volume 140 (2013), p. 135 | DOI:10.1016/j.hydromet.2013.09.010
  • Yannick Mamindy-Pajany; Charlotte Hurel; Florence Geret; Michèle Roméo; Nicolas Marmier Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: A pilot-scale experiment, Journal of Hazardous Materials, Volume 252-253 (2013), p. 213 | DOI:10.1016/j.jhazmat.2013.03.001
  • Bo Yu; Shao-Yi Jia; Yong Liu; Song-Hai Wu; Xu Han Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate, Journal of Hazardous Materials, Volume 262 (2013), p. 701 | DOI:10.1016/j.jhazmat.2013.09.010
  • Irma Lia Botto; María Elena Canafoglia; Delia Gazzoli; María José González Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile) Eruption: Preliminary Approach for the Application in the Arsenic Removal, Journal of Spectroscopy, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/254517
  • Jeong Woo Seol; Seong Hee Kim; Woo Chun Lee; Hyeon Goo Cho; Soon-Oh Kim Characterization of Arsenic Sorption on Manganese Slag, Journal of the Mineralogical Society of Korea, Volume 26 (2013) no. 4, p. 229 | DOI:10.9727/jmsk.2013.26.4.229
  • Haibo Liu; Tianhu Chen; Xuehua Zou; Chengsong Qing; Ray L. Frost Thermal treatment of natural goethite: Thermal transformation and physical properties, Thermochimica Acta, Volume 568 (2013), p. 115 | DOI:10.1016/j.tca.2013.06.027
  • Wenshu Tang; Yu Su; Qi Li; Shian Gao; Jian Ku Shang Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation, Water Research, Volume 47 (2013) no. 11, p. 3624 | DOI:10.1016/j.watres.2013.04.023
  • Hang Cui; Yu Su; Qi Li; Shian Gao; Jian Ku Shang Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling, Water Research, Volume 47 (2013) no. 16, p. 6258 | DOI:10.1016/j.watres.2013.07.040
  • R.K. Behera; K. Rout; B. Nayak; N.N. Das Removal of Selenium and Arsenic Oxyanions Using Natural Goethite-Rich Iron Ore from Daitari, Orissa, India: Effect of Heat Treatment, Adsorption Science Technology, Volume 30 (2012) no. 10, p. 867 | DOI:10.1260/0263-6174.30.10.867
  • Katherine Vaca-Escobar; Mario Villalobos; Agueda E. Ceniceros-Gómez Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: III. Adsorption versus precipitation in clean As(V)/goethite/Pb(II)/carbonate systems, Applied Geochemistry, Volume 27 (2012) no. 11, p. 2251 | DOI:10.1016/j.apgeochem.2012.01.011
  • Britta Planer-Friedrich; Cornelia Härtig; Heidi Lissner; Jörg Steinborn; Elke Süß; M. Qumrul Hassan; Anwar Zahid; Mahmood Alam; Broder Merkel Organic carbon mobilization in a Bangladesh aquifer explained by seasonal monsoon-driven storativity changes, Applied Geochemistry, Volume 27 (2012) no. 12, p. 2324 | DOI:10.1016/j.apgeochem.2012.08.005
  • Ronghui Li; Qi Li; Shian Gao; Jian Ku Shang Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism, Chemical Engineering Journal, Volume 185-186 (2012), p. 127 | DOI:10.1016/j.cej.2012.01.061
  • Rongzhi Chen; Zhenya Zhang; Zhongfang Lei; Norio Sugiura Preparation of iron-impregnated tablet ceramic adsorbent for arsenate removal from aqueous solutions, Desalination, Volume 286 (2012), p. 56 | DOI:10.1016/j.desal.2011.11.004
  • Kardia Ramirez-Muñiz; Feifei Jia; Shaoxian Song Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite - goethite concentrate, Environmental Chemistry, Volume 9 (2012) no. 6, p. 512 | DOI:10.1071/en12120
  • Sekun Chang; Sunjoon Kim; Sang-Hun Lee; Byong-Hun Jeon; Jae-Young Choi Redox reaction of Fe(0) with As(V) sorbed onto goethite-coated sand under anoxic conditions, Geosystem Engineering, Volume 15 (2012) no. 1, p. 33 | DOI:10.1080/12269328.2012.674654
  • Leila Babaie Far; Bubak Souri; Masoumeh Heidari; Roshan Khoshnavazi Evaluation of iron and manganese-coated pumice application for the removal of as(v) from aqueous solutions, Iranian Journal of Environmental Health Science Engineering, Volume 9 (2012) no. 1 | DOI:10.1186/1735-2746-9-21
  • Haibo Liu; Tianhu Chen; Ray L. Frost; Dongyin Chang; Chengsong Qing; Qiaoqin Xie Effect of aging time and Al substitution on the morphology of aluminous goethite, Journal of Colloid and Interface Science, Volume 385 (2012) no. 1, p. 81 | DOI:10.1016/j.jcis.2012.07.016
  • Seong Hee Kim; Woo Chun Lee; Hyen Goo Cho; Soon-Oh Kim Characterization of Arsenic Adsorption onto Hematite, Journal of the Mineralogical Society of Korea, Volume 25 (2012) no. 4, p. 197 | DOI:10.9727/jmsk.2012.25.4.197
  • Marisol Gallegos-Garcia; Kardia Ramírez-Muñiz; Shaoxian Song Arsenic Removal from Water by Adsorption Using Iron Oxide Minerals as Adsorbents: A Review, Mineral Processing and Extractive Metallurgy Review, Volume 33 (2012) no. 5, p. 301 | DOI:10.1080/08827508.2011.584219
  • D.G. Eliopoulos; M. Economou-Eliopoulos; A. Apostolikas; J.P. Golightly Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic, Ore Geology Reviews, Volume 48 (2012), p. 413 | DOI:10.1016/j.oregeorev.2012.05.008
  • Ruijiang Liu; Yi Lu; Xiangqian Shen; Qingrong Liang; Qiuju Wang Arsenic(V) Adsorption from Aqueous Solution on Magnetic Fe0.2(Co20Ni80)0.8 Alloy Porous Microfibers, Water, Air, Soil Pollution, Volume 223 (2012) no. 8, p. 5365 | DOI:10.1007/s11270-012-1286-2
  • Soumya Das; M. Jim Hendry Changes of crystal morphology of aged goethite over a range of pH (2–13) at 100°C, Applied Clay Science, Volume 51 (2011) no. 1-2, p. 192 | DOI:10.1016/j.clay.2010.11.006
  • F. Granados-Correa; N.G. Corral-Capulin; M.T. Olguín; C.E. Acosta-León Comparison of the Cd(II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH), Chemical Engineering Journal, Volume 171 (2011) no. 3, p. 1027 | DOI:10.1016/j.cej.2011.04.055
  • Yannick Mamindy-Pajany; Charlotte Hurel; Nicolas Marmier; Michèle Roméo Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility, Desalination, Volume 281 (2011), p. 93 | DOI:10.1016/j.desal.2011.07.046
  • Tülin Deniz Çiftçi; Onur Yayayürük; Emür Henden Study of arsenic(III) and arsenic(V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH, Environmental Technology, Volume 32 (2011) no. 3, p. 341 | DOI:10.1080/09593330.2010.499546
  • Phuong T. N. Nguyen; Leonila C. Abella; Pag-asa D. Gaspillo; Hirofumi Hinode Removal of Arsenic from Simulated Groundwater Using Calcined Laterite as the Adsorbent, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Volume 44 (2011) no. 6, p. 411 | DOI:10.1252/jcej.11we025
  • Marek Kosmulski The pH-dependent surface charging and points of zero charge, Journal of Colloid and Interface Science, Volume 353 (2011) no. 1, p. 1 | DOI:10.1016/j.jcis.2010.08.023
  • Dion E. Giles; Mamata Mohapatra; Touma B. Issa; Shashi Anand; Pritam Singh Iron and aluminium based adsorption strategies for removing arsenic from water, Journal of Environmental Management, Volume 92 (2011) no. 12, p. 3011 | DOI:10.1016/j.jenvman.2011.07.018
  • Wenshu Tang; Qi Li; Shian Gao; Jian Ku Shang Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method, Journal of Hazardous Materials (2011) | DOI:10.1016/j.jhazmat.2011.04.111
  • Carina Luengo; Virginia Puccia; Marcelo Avena Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite, Journal of Hazardous Materials, Volume 186 (2011) no. 2-3, p. 1713 | DOI:10.1016/j.jhazmat.2010.12.074
  • Fangzhi Mou; Jianguo Guan; Zhidong Xiao; Zhigang Sun; Weidong Shi; Xi-an Fan Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(v) removal capability, Journal of Materials Chemistry, Volume 21 (2011) no. 14, p. 5414 | DOI:10.1039/c0jm03726e
  • Hui Li; Wei Li; Yanjun Zhang; Taishan Wang; Bao Wang; Wei Xu; Li Jiang; Weiguo Song; Chunying Shu; Chunru Wang Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal, Journal of Materials Chemistry, Volume 21 (2011) no. 22, p. 7878 | DOI:10.1039/c1jm10979k
  • Ronghui Li; Qi Li; Shian Gao; Jian Ku Shang Enhanced Arsenite Adsorption onto Litchi‐Like Al‐Doped Iron Oxides, Journal of the American Ceramic Society, Volume 94 (2011) no. 2, p. 584 | DOI:10.1111/j.1551-2916.2010.04098.x
  • Dewen He; Yutang Xiao; Dingmin Liang; Huannian Zhou; Lu Du; Lei Liu Characterization and Application of Adsorption Material with Hematite and Polystyrene, Materials Sciences and Applications, Volume 02 (2011) no. 04, p. 215 | DOI:10.4236/msa.2011.24027
  • M. A. Subhan; S. A. Monim; M. B. R. Bhuiyan; A. N. Chowdhury; M. Islam; M. A. Hoque Synthesis, characterization of a multi-component metal oxide (Al0.88Fe0.67Zn0.28O3) and elimination of As (III) from aqueous solution., Open Journal of Inorganic Chemistry, Volume 01 (2011) no. 02, p. 9 | DOI:10.4236/ojic.2011.12002
  • Yannick Mamindy Pajany; Charlotte Hurel; Nicolas Marmier; Michèle Roméo Tests de lixiviation et de stabilisation d'un sédiment portuaire contaminé à l'arsenic, European Journal of Environmental and Civil Engineering, Volume 14 (2010) no. 2, p. 233 | DOI:10.1080/19648189.2010.9693215
  • Carlos Salazar-Camacho; Mario Villalobos Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face – Site density model, Geochimica et Cosmochimica Acta, Volume 74 (2010) no. 8, p. 2257 | DOI:10.1016/j.gca.2010.01.025
  • K. Van Den Bergh; G. Du Laing; Juan Carlos Montoya; E. De Deckere; F. M. G. Tack Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters, Journal of Environmental Science and Health, Part A, Volume 45 (2010) no. 13, p. 1741 | DOI:10.1080/10934529.2010.513262
  • Giacomo Mariani; Massimo Fabbri; Francesco Negrini; Pier Luigi Ribani High-Gradient Magnetic Separation of pollutant from wastewaters using permanent magnets, Separation and Purification Technology, Volume 72 (2010) no. 2, p. 147 | DOI:10.1016/j.seppur.2010.01.017

Cité par 171 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: