Outline
Comptes Rendus

A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles
Comptes Rendus. Chimie, Volume 12 (2009) no. 12, pp. 1287-1295.

Abstract

A simple, clean and three-component one-pot cyclo-condensation reaction of barbituric acids, aromatic aldehydes and 6-amino-uracils or 1H-pyrazol-5-amines for the synthesis of pyrido[2,3-d:6,5-d]dipyrimidines and pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidines in refluxing water is reported. This protocol includes some important aspects, such as the use of water as a “green” reaction medium, high atom economy and mild reaction conditions. Reaction of 6-amino-uracils with ninhydrine resulted in the formation of tetrahydroindeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidine-triones. These products were evaluated in vitro for their antibacterial activities. Most of the compounds have a narrow to good spectrum antimicrobial activity.

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crci.2009.06.004
Keywords: Uracil, Aldehyde, Pyridopyrimidine, Barbituric acid, Ninhydrin

Ayoob Bazgir 1; Maryam Moammadi Khanaposhtani 1; Ramin Ghahremanzadeh 1; Ali Abolhasani Soorki 2

1 Department of Chemistry, Shahid Beheshti University, G.C, P.O. Box 19396-4716, Tehran, Iran
2 Research Institute of Petroleum, Academic Center of Education, Culture & Research, Shahid Beheshti University, G.C, Tehran, Iran
@article{CRCHIM_2009__12_12_1287_0,
     author = {Ayoob Bazgir and Maryam Moammadi Khanaposhtani and Ramin Ghahremanzadeh and Ali Abolhasani Soorki},
     title = {A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles},
     journal = {Comptes Rendus. Chimie},
     pages = {1287--1295},
     publisher = {Elsevier},
     volume = {12},
     number = {12},
     year = {2009},
     doi = {10.1016/j.crci.2009.06.004},
     language = {en},
}
TY  - JOUR
AU  - Ayoob Bazgir
AU  - Maryam Moammadi Khanaposhtani
AU  - Ramin Ghahremanzadeh
AU  - Ali Abolhasani Soorki
TI  - A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles
JO  - Comptes Rendus. Chimie
PY  - 2009
SP  - 1287
EP  - 1295
VL  - 12
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crci.2009.06.004
LA  - en
ID  - CRCHIM_2009__12_12_1287_0
ER  - 
%0 Journal Article
%A Ayoob Bazgir
%A Maryam Moammadi Khanaposhtani
%A Ramin Ghahremanzadeh
%A Ali Abolhasani Soorki
%T A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles
%J Comptes Rendus. Chimie
%D 2009
%P 1287-1295
%V 12
%N 12
%I Elsevier
%R 10.1016/j.crci.2009.06.004
%G en
%F CRCHIM_2009__12_12_1287_0
Ayoob Bazgir; Maryam Moammadi Khanaposhtani; Ramin Ghahremanzadeh; Ali Abolhasani Soorki. A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. Comptes Rendus. Chimie, Volume 12 (2009) no. 12, pp. 1287-1295. doi : 10.1016/j.crci.2009.06.004. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2009.06.004/

Version originale du texte intégral

1 Introduction

The importance of fused pyrimidines, common source for the development of new potential therapeutic agents [1,2], is well known. Among them, the pyridopyrimidine scaffold and their oxo and thioxo derivatives is a well-known pharmacophore in drug design and it is associated with a wide range of biological properties [3–7]. Pyrido[3,2-d]-pyrimidines have been described as tyrosine kinase inhibitors and as dihydrofolate reductase inhibitors [8,9]. Pyrido[2,3-d]pyrimidines possess dihydrofolate reductase inhibiting and antitumour activity [10]. Similarly, in recent years, considerable attention has been focused on the development of new methodology to synthesize many kinds of pyrazolopyrimidine ring system [11]. Indeed, these compounds are, by now widely recognized as important organic materials showing interesting biological activities [12]. Considering the important biological properties of fused pyrimidines, a number of methods have been reported for the synthesis of these heterocycles [13–20].

One of the powerful tools used to combine economic aspects with the environmental concerns is performing organic reactions in water; this strategy consists of two or more synthetic steps, which are carried out in water as a cheap, nontoxic, environmentally friendly solvent, in a one-step reaction, without isolation of any intermediate thus reducing time, saving money, energy and raw materials [21,22]. The development and implementation of processes using water as solvent may serve as one avenue for lowering both the environmental impact of the chemical industry and the hundred billion dollar costs associated with environmental regulation compliance [23]. Moreover, multicomponent condensation reactions due to their productivity, simple procedures, convergence and facile execution are one of the important strategies in combinatorial chemistry [24,25]. As a result, one-pot multicomponent reactions in organic chemistry have expanded rapidly [26,27].

Due to the biological activity of fused pyrimidines, and our interest in the synthesis of heterocyclic compounds especially pyrimidine derivatives [28–42], herein, we report a clean and efficient method for the preparation of pyrimidine-fused heterocycles in water.

2 Results and discussion

It was found that a mixture of 1,3-dimethyl-6-amino-uracil 1a, benzaldehyde 2a and barbituric acid 3a in the presence of catalytic p-toluene sulfonic acid (p-TSA) as an inexpensive and readily available catalyst afforded 1,3-dimethyl-5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone 4a in 86% yield in refluxing water for 4 h (Scheme 1).

Scheme 1

Then, to delineate this approach, particularly in regard to library construction, this methodology was evaluated by using different barbituric acids, aldehydes and 6-amino-uracils. Three uracils 1a-c, four substituted aromatic aldehyds 2a-d and three barbituric acids 3a-c were chosen for the library validation (Scheme 2). Corresponding pyrido[2,3-d:6,5-d]dipyrimidine derivatives 4a-l were synthesized by the one-pot, three-component condensation in good yields at refluxing water in the presence of p-TSA for 4 h. The reaction can be represented as in Table 1.

Scheme 2
Table 1

Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines 4a-l.

EntryCompound 1ArCompound 3Product 4Yield (%)a
1C6H5 2a86
21a4-ClC6H4 2b3a87
31a4-NO2C6H4 2c3a89
41a4-MeOC6H4 2d3a86
51aC6H5 2a82
61a4-ClC6H4 2b3b81
71a4-NO2C6H4 2c3b84
8C6H5 2a3b4a81
91b-ClC6H4 2b3b4b83
101b4-NO2C6H4 2c3b4c85
111b4-MeOC6H4 2d3b4d77
121bC6H5 2a80
131b4-ClC6H4 2b3c81
14C6H5 2a3a4h84
151c4-ClC6H4 2b3b4i86
161cC6H5 2a3b81
171c4-ClC6H4 2b3b88
181aC6H5 2a3c4j85
191a4-ClC6H4 2b3c4k87

a Isolated yields.

The results were good in terms of yields and product purity in the presence of p-TSA, while without p-TSA and over long period of time (12 h) the yields of products were low (<40%). When this reaction was carried out with an aliphatic aldehyde such as propionaldehyde or butanaldehyde in same conditions (water/p-TSA), TLC and 1H NMR spectra of the reaction mixture showed a combination of starting materials and numerous products, the yield of the expected product was very poor.

The nature of these compounds as 1:1:1 adducts was apparent from their mass spectra, which displayed, in each case, the molecular ion peak at appropriate m/z values. Compounds 4 are stable solids whose structures are fully supported by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis.

A possible mechanism for the formation of 4 is proposed in Scheme 3. It is reasonable to assume that 4 results from initial formation of a heterodiene 5 by standard Knoevenagel condensation of the barbituric acid 3 and aldehyde 2. Then, the subsequent Michael-type addition of the 6-amino-uracil 1 to the heterodyne 5, followed by cyclization affords the corresponding products 4 (Scheme 3).

Scheme 3

Very recently, we reported the synthesis of pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidine-diones under solvent-free conditions [43]. Finally, to further explore the potential of this clean protocol for pyridopyrimidines synthesis, we investigated reaction involving 1H-pyrazol-5-amines 6, barbituric acids 3 and aromatic aldehyde 2 and obtained pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidine-dione derivatives 7a-l in good yields for 3 h (Scheme 4, Table 2).

Scheme 4
Table 2

Synthesis of 1H-pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidinones 7.

Product 7ArXYYielda (%)
aC6H5HO81
b4-ClC6H4HO82
c4-BrC6H4HO80
dC6H5NO2O79
e4-ClC6H4NO2O86
f4-BrC6H4NO2O81
gC6H5HS89
h4-ClC6H4HS83
i4-NO2C6H4HS80
jC6H5NO2S85
k4-ClC6H4NO2S83
l4-NO2C6H4NO2S84

a Isolated yields.

To further explore the potential of this protocol for pyrimidine-fused heterocyles synthesis, we investigated reaction of 6-amino-uracils 1 with ninhydrine 8 and obtained tetrahydroindeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidine-trione derivatives 9a-c in good yields (Scheme 5).

Scheme 5

Finally, compounds 4 and 9 were screened for antimicrobial activity. The microorganisms used in this study were Escherichia coli ATCC 25922, Pseudomonas aeruginusa ATCC 85327, (Gram-negative bacteria), Enterococcus faecalis ATCC 29737, Bacillus subtilis ATCC 465, Bacillus pumilus PTCC 1114, Micrococcus luteus PTCC 1110, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Sterptococcus mutans PTCC 1601 (Gram-positive bacteria). The minimum inhibitory concentration (MIC) of the synthesized compounds determined by microdilution method [44] and compared to two commercial antibiotics (Tables 3 and 4).

Table 3

MIC (μg/ml) values of products 4.

ProductsStandard
4a4b4c4d4e4f4g4h4i4j4k4lTetracyclineGentamicin
Bacillus subtilis64323264328321681616164a
Bacillus pumilus1814a16a16a32161616328a
Micrococcus luteus3232a128a32a1681616a4a
Staphylococcus aureusa128aaa16a3216168324a
Staphylococcus epidermidis64326416a82563216161616< 2a
Sterptococcus mutans6432646425683216484322a
Escherichia coli164844816321616168a4
Enterococcus faecalis2< 2< 2< 2< 2< 24644428a
Pseudomonas aeruginosa128848482< 22< 22a8
Table 4

MIC (μg/ml) values of products 9.

CompoundsMicroorganisms
B. subtilisB. pumilusM. luteusS. aureusS. epidermidisS. mutansE. coliE. faecalisP. aeruginosa
9a8414241218224
9b12824321624426
9c641216814224

Most of the compounds have a narrow to good spectrum antimicrobial activity. All of the compounds were found to be more active than Tetracycline against E. Faecalis (<2–-6 μg/ml), E. coli (4–32 μg/ml) and P. aeruginosa (<2–16 μg/ml). Almost all of the compounds were found to be more active than Gentamicin against all tested strains. The products 4a, 4c-e and 4 g do not have antibiotic activity against S. aureus. Although, all of the compounds were found to be less active than Tetracycline against the B. subtilis, B. pumilus, M. luteus, S. aureus, S. epidermidis, S. mutans. 5-Aryl-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-triones 4h-l were more active than the corresponding ones of the series 4a-g, reinforcing the pharmacophoric contribution of thiocarbonyl moiety relative to carbonyl moiety to the mechanism of action against the all of the tested bacteria except E. faecalis and E. coli. The compounds 7a-c have a good spectrum antimicrobial activity against all tested strains.

3 Conclusions

In conclusion, we have described an efficient, clean and simple method for the preparation of pyrido[2,3-d:6,5-d]dipyrimidines, pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidine and indeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidine derivatives via a cyclo-condensation reaction in water. This protocol includes some important aspects like the use of water as a “green” reaction medium, high atom economy and mild reaction conditions.

4 Experimental

4.1 Materials and techniques

Melting points were taken on an Electrothermal 9100 apparatus and left uncorrected. IR spectra were obtained on a Shimadzu IR-470 spectrometer. 1H and 13C NMR spectra were recorded on a BRUKER DRX-300 AVANCE spectrometer at 300.13 and 75.47 MHz. NMR spectra were obtained on solutions in DMSO using TMS as internal standard. All of the chemicals were purchased from Fluka, Merck and Aldrich and used without purification.

4.2 Typical procedure

4.2.1 1,3-dimethyl-5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4a)

A mixture of 1,3-dimethyl-6-amino-uracil (1 mmol), benzaldehyde (1 mmol), barbituric acid (1 mmol) and p-TSA (0.1 g) in refluxing water (5 ml) was stirred for 4 h (the progress of reaction was monitored by TLC). After completion of reaction, the reaction mixture was filtered and the precipitate washed with water and then EtOH to afford the pure product 4a as a white powder (86%). MP > 350 °C; IR (KBr) v = 3322, 2998, 1709, 1695 cm−1. MS, m/z (%): 353 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.07 (s, 3H, CH3), 3.42 (s, 3H, CH3), 4.77 (s, 1H, CH), 7.09–7.26 (m, 5H, HAr), 8.94 (bs, 1H, NH), 10.11 (bs, 1H, NH), 10.89 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 28.1, 30.1, 34.5, 90.0, 90.1, 126.6, 128.2, 143.8, 146.2, 149.9, 150.8, 160.8, 162.8. Anal. Calcd. for C17H15N5O4: C, 57.79; H, 4.28; N, 19.82%. Found: C, 57.74; H, 4.24; N, 19.86%.

4.2.2 1,3-dimethyl-5-(4-chlorophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4b)

White powder; m.p. > 350 °C; IR (KBr) v = 3332, 3147, 2977, 1698 cm−1. MS, m/z (%): 387 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.07 (s, 3H, CH3), 3.39 (s, 3H, CH3), 4.75 (s, 1H, CH), 7.05–7.33 (m, 4H, HAr), 8.95 (bs, 1H, NH), 10.12 (bs, 2H, 2NH), 10.92 (s, 1H, NH). Anal. Calcd. for C17H14ClN5O4: C, 52.65; H, 3.64; N, 18.06%. Found: C, 52.71; H, 3.59; N, 18.00%.

Due to very low solubility of the product 4b, we can not report the 13C NMR data for this product.

4.2.3 1,3-dimethyl-5-(4-nitrophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4c)

White powder; m.p. > 350 °C; IR (KBr) v = 3460, 2931, 1694 cm−1. MS, m/z (%): 398 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.07 (s, 3H, CH3), 3.42 (s, 3H, CH3), 4.90 (s, 1H, CH), 7.56 (d, 2H, 3JHH = 9.2 Hz, HAr), 8.07 (d, 2H, 3JHH = 9.1 Hz, HAr), 9.04 (bs, 1H, NH), 10.11 (s, 1H, NH), 10.93 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 28.1, 30.2, 35.2, 88.7, 88.9, 123.4, 128.3, 129.6, 146.4, 149.8, 150.8, 153.7, 154.9, 160.8, 162.8. Anal. Calcd. for C17H14N6O6: C, 51.26; H, 3.54; N, 21.10%. Found: C, 51.30; H, 3.59; N, 21.04%.

4.2.4 1,3-dimethyl-5-(4-metoxyphenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4d)

White powder; m.p. > 350 °C. IR (KBr) v = 3260, 3013, 1714, 1670, 1609 cm−1. MS, m/z (%): 383 (M+). 1H NMR (300 MHz, DMSO-d6 ): δ = 3.09 (s, 3H, CH3), 3.41 (s, 3H, CH3), 3.67 (s, 3H, CH3), 4.76 (s, 1H, CH), 6.67–7.08 (m, 4H, HAr), 8.93 (bs, 1H, NH), 10.11 (bs, 1H, NH), 10.90 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 28.1, 30.1, 34.4, 55.2,. 89.9, 89.9, 114.7, 120.3, 129.2, 143.8, 147.7, 149.9, 150.8, 159.2, 160.9, 162.9. Anal. Calcd. for C18H17 N5O5: C, 56.39; H, 4.47; N, 18.27%. Found: C, 56.45; H, 4.51; N, 18.22%.

4.2.5 5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4e)

White powder; m.p. > 350 °C; IR (KBr) v = 3235, 3089, 1705, 1663 cm−1. MS, m/z (%): 325 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.73 (s, 1H, CH), 7.01–7.22 (m, 5H, HAr), 9.95 (s, 2H, 2NH), 10.99 (s, 2H, 2NH). Anal. Calcd. for C15H11N5O4: C, 55.39; H, 3.41, N, 21.53%. Found: C, 55.34; H, 3.45; N, 21.47%.

Due to very low solubility of the product 4e, we can not report the 13C NMR data for this product.

4.2.6 5-(4-chlorophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4f)

White powder; m.p. > 350 °C. IR (KBr) v = 3265, 3147, 3019, 1719, 1714, 1681 cm−1. MS, m/z (%): 359 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.65 (s, 1H, CH), 7.21–7.24 (m, 4H, HAr), 10.84 (s, 2H, 2NH), 11.15 (s, 2H, 2NH). 13C NMR (75 MHz, DMSO-d6): δ = 33.3, 89.1, 128.1, 130.0, 131.0, 144.0, 145.3, 150.2, 162.9. Anal. Calcd. for C15H10ClN5O4: C, 50.08; H, 2.80; N, 19.47%. Found: C, 50.14; H, 2.85; N, 19.40%.

4.2.7 5-(4-nitrophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4 g)

White powder; m.p. > 350 °C. IR (KBr) v = 3238, 3029, 1724, 1675 cm−1. MS, m/z (%): 370 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.76 (s, 1H, CH), 7.51 (d, 2H, 3JHH = 9.1 Hz, HAr), 8.07 (d, 2H, 3JHH = 9.2 Hz, HAr), 10.86 (s, 2H, 2NH), 11.19 (s, 2H, 2NH). 13C NMR (75 MHz, DMSO-d6): δ = 34.3, 88.5, 128.5, 129.5, 131.5, 144.3, 146.3, 150.3, 162.9. Anal. Calcd. for C15H10N6O6: C, 48.66; H, 2.72; N, 22.70%. Found: C, 48.71; H, 2.68; N, 22.75%.

4.2.8 1,3-dimethyl-5-phenyl-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4 h)

Cream powder; m.p. > 350 °C; IR (KBr) v = 3217, 3189, 1705, 1687 cm−1. MS, m/z (%): 369 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.08 (s, 3H, CH3), 3.42 (s, 3H, CH3), 4.68 (s, 1H, CH), 7.09–7.29 (m, 5H, HAr), 8.96 (bs, 1H, NH), 11.80 (s, 1H, NH), 12.34 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 28.1, 30.1, 34.6, 89.7, 94.3, 126.8, 128.2, 128.3, 143.7, 145.6, 150.8, 160.3, 160.8, 173.8. Anal. Calcd. for C17H15N5O3S: C, 55.27; H, 4.09; N, 18.96%. Found: C, 55.33; H, 4.04; N, 18.90%.

4.2.9 1,3-dimethyl-5-(4-chlorophenyl)-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H, 5H,7H)-trione (4i)

Cream powder; m.p. > 350 °C; IR (KBr) v = 3226, 1706, 1678 cm−1. MS, m/z (%): 403 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.07 (s, 3H, CH3), 3.40 (s, 3H, CH3), 4.78 (s, 1H, CH), 7.23–7.28 (m, 4H, HAr). 9.08 (bs, 1H, NH), 11.47 (s, 1H, NH), 12.34 (s, 1H, NH) Anal. Calcd. for C17H14ClN5O3S: C, 50.56; H, 3.49; N, 17.34%. Found: C, 50.60; H, 4.34; N, 17.27%.

Due to very low solubility of the products 4j–l, we can not report the 13C NMR data for these products.

4.2.10 5-phenyl-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4j)

Yellow powder; m.p. 296 °C dec.; IR (KBr) v = 3276, 3045, 1703, 1678 cm−1. MS, m/z (%): 341 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.80 (s, 1H, CH), 7.19–7.21 (m, 5H, HAr), 9.04 (bs, 1H, NH), 9.75 (bs, 1H, NH), 10.78 (s, 1H, NH), 12.45 (bs, 1H, NH). Anal. Calcd. for C15H11N5O3S: C, 52.78; H, 3.25; N, 20.52%. Found: C, 52.83; H, 3.29; N, 20.60%.

4.2.11 5-(4-chlorophenyl)-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4k)

Yellow powder; m.p. 298 °C dec.; IR (KBr) v = 3273, 3056, 1719, 1658 cm−1. MS, m/z (%): 375 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.62 (s, 1H, CH), 720–7.22 (m, 4H, HAr), 9.03 (bs, 1H, NH), 9.77 (bs, 1H, NH), 10.76 (s, 1H, NH), 11.77 (bs, 1H, NH). Anal. Calcd. for C15H10ClN5O3S: C, 47.94; H, 2.68; N,18.64%. Found: C, 47.88; H, 2.63; N, 18.70%.

4.2.12 5-(4-nitrrophenyl)-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4l)

Yellow powder; m.p. 290 °C dec.; IR (KBr) v = 3280, 3069, 1713, 1690 cm−1. MS, m/z (%): 386 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 4.78 (s, 1H, CH), 7.53 (d, 2H, 3JHH = 9.4 Hz, HAr), 8.08 (d, 2H, 3JHH = 9.3 Hz, HAr), 10.91 (s, 1H, NH), 11.61 (bs, 1H, NH), 12.30 (s, 1H, NH), 12.33 (bs, 1H, NH). Anal. Calcd. for C15H10N6O5S: C, 46.63; H, 2.61; N,21.75%. Found: C, 46.69; H, 2.66; N, 21.82%.

Products 7a–l are known compounds [37] and we don’t report any characterization data for these compounds.

4.2.13 4b,9b-dihydroxy-1,3-dimethyl-1,4b,9b,10-tetrahydroindeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidine-2,4,5(3H)-trione (9a)

White powder (92%); m.p. 278–280 °C; IR (KBr) v = 3407, 3234, 1728, 1679, 1633 cm−1. MS, m/z (%): 315 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 3.01 (s, 3H, NCH3), 3.18 (s, 3H, NCH3), 5.90 (s, 1H, OH), 6.79 (s, 1H, OH), 7.53–7.91 (m, 4H, HAr), 9.28 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 30.8, 31.1, 83.6, 83.9, 92.9, 123.2, 125.6, 130.6, 134.7, 136.1, 149.8, 151.7, 153.8, 157.8, 197.7. Anal. Calcd. for C15H13N3O5: C, 57.14; H, 4.16; N,13.33%. Found: C, 57.19; H, 4.20; N, 13.27%.

4.2.14 4b,9b-dihydroxy-1,4b,9b,10-tetrahydroindeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidin-2,4,5(3H)-trione (9b)

White powder (88%); m.p. > 330 °C dec.; IR (KBr) v = 3219, 2862, 1716, 1698 cm−1. MS, m/z (%): 287 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 5.84 (s, 1H, OH), 6.59 (s, 1H, OH), 7.53–7.97 (m, 4H, HAr), 8.72 (s, 1H, NH), 10.07 (s, 1H, NH),. 11.16 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 82.8, 83.6, 93.0, 123.1, 125.8, 130.5, 134.6, 135.9, 149.9, 151.7, 154.5, 159.6, 197.9. Anal. Calcd. for C13H9N3O5: C, 54.36; H, 3.16; N,14.63%. Found: C, 54.40; H, 3.11; N, 14.70%.

4.2.15 4b,9b-dihydroxy-2-thioxo-1,2,3,4b,9b,10-hexahydroindeno[2’,1’:4,5]pyrorolo[2,3-d]pyrimidine-4,5-dione (9c)

White powder (85%); m.p. > 350 °C; IR (KBr) v = 3285, 3166, 2902, 1715, 1658 cm−1. MS, m/z (%): 303 (M+). 1H NMR (300 MHz, DMSO-d6): δ = 5.97 (s, 1H, OH), 6.67 (s, 1H, OH), 7.27–8.03 (m, 4H, HAr), 8.54 (s, 1H, NH), 11.55 (s, 1H, NH), 12.49 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ = 82.7, 87.8, 92.9, 123.2, 126.1, 130.6, 134.6, 136.1, 149.9, 153.3, 157.3, 176.1, 197.6. Anal. Calcd. for C13H9N3O4S: C, 51.48; H, 2.99; N,13.85%. Found: C, 51.42; H, 2.95; N, 13.77%.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Shahid Beheshti University.


References

[1] D.J. Brown (A.R. Katritzky; C.W. Rees, eds.), Comprehensive Heterocyclic Chemistry, 13, Pergamon Press, Oxford, 1984, p. 57

[2] H. Wamhoff; J. Dzenis; K. Hirota Adv. Heterocycl. Chem., 55 (1992), p. 129

[3] L. Prakash; M. Shaihla; R.L. Mital Pharmazie, 44 (1989), p. 490

[4] A. Monge; V. Martinez-Merino; C. Sanmartin; F.J. Fernandez; M.C. Ochoa; C. Bellver; P. Artigas; E. Fernandez-Alvarez Eur. J. Med. Chem, 24 (1989), p. 209

[5] R.A. Lazarus; S.J. Benkovic; S. Kaufman J. Biol. Chem, 258 (1983), p. 10960

[6] C.J. Blankley; L.R. Bennett; R.W. Fleming; R.D. Smith; D.K. Tessman; H.R. Kaplan J. Med. Chem., 26 (1983), p. 403

[7] R. Alajarine; J. Alvbarez-Builla; J.J. Vaquero; C. Sunkel; J. Fau; P. Statkow; J. Sanz Tetrahedron: Asymmetry, 4 (1993), p. 617

[8] J.B. Smaill; B.D. Palmer; G.R. Rewcastle; W.A. Denny; D.J. McNamara; E.M. Dobrusin; A.J. Bridges; H. Zhou; H.D. Hollis Showalter; R.T. Winters; W.R. Leopold; D.W. Fry; J.M. Nelson; V. Slintak; W.L. Elliott; B.J. Roberts; P.W. Vincent; S.J. Patmore J. Med. Chem, 42 (1999), p. 1803

[9] A. Gangjee; Y. Zhu; S.F. Queener J. Med. Chem, 41 (1998), p. 4533

[10] A. Gangjee; O. Adair; S.F. Queener J. Med. Chem, 42 (1999), p. 2447

[11] M.H. Elnagdi; N. Al-awadi; A.N. Erian (A.R. Katritzky; C.W. Rees; E.F.V. Scriven, eds.), Compensative Heterocyclic Chemistry II, 7, Pergamon Press, Oxford, 1996, p. 431

[12] M.H. Elnagdi; M.R.H. Elmoghayar; G.F. Elgemeie Adv. Heterocycl. Chem., 41 (1984), p. 319

[13] K. Hirota; J. Huang; H. Sajiki; Y. Maki Heterocycles, 24 (1986), p. 2293

[14] R. Niess; R.K. Robins J. Heterocycl. Chem., 7 (1970), p. 243

[15] K. Hirota; H. Kitade; H. Sajiki; Y. Maki Synthesis (1984), p. 589

[16] M. Gohain; D. Prajapati; B.J. Gogoi; J.S. Sandhu Synlett (2004), p. 1179

[17] J. Quiroga; C. Cisneros; B. Insuasty; R. Abonia J. Heterocycl. Chem., 43 (2006), p. 299

[18] A. Agarwal; P.M.S. Chauhan Tetrahedron Lett., 46 (2005), p. 1345

[19] S. Tu; L. Cao; Y. Zhang; Q. Shao; D. Zhou; C. Li Ultrason. Sonochem., 156 (2008), p. 217

[20] D. Parajapati; A. Thakur J. Tetrahedron Lett., 46 (2005), p. 1433

[21] M.A. Mironov QSAR Comb. Sci., 25 (2006), p. 423

[22] A. Dömling Chem. Rev., 106 (2006), p. 17

[23] M. Lancaster Green Chemistry: An Introductory Text, Royal Society of Chemistry, Cambridge, 2002

[24] R.E. Dolle; B.L. Bourdonnec; G.A. Morales; K.J. Moriarty; J.M. Salvino J. Comb. Chem., 8 (2006), p. 597

[25] A. Ganesan Comb. Chem., 7 (2002), p. 47

[26] L.F. Tietze; A. Modi Med. Res. Rev., 20 (2000), p. 304

[27] I. Ugi; S. Heck Comb. Chem. High Throughput Screen, 4 (2001), p. 1

[28] A. Bazgir; M. Seyyedhamzeh; Z. Yasaei; P. Mirzaei Tetrahedron Lett., 48 (2007), p. 8790

[29] M. Sayyafi; M. Seyyedhamzeh; H.R. Khavasi; A. Bazgir Tetrahedron, 64 (2008), p. 2375

[30] M. Dabiri; H. Arvin-Nezhad; H.R. Khavasi; A. Bazgir J. Heterocycl. Chem., 44 (2007), p. 1009

[31] M. Dabiri; S.C. Azimi; H. Arvin-Nezhad; A. Bazgir Heterocycles, 75 (2008), p. 87

[32] M. Dabiri; A.S. Delbari; A. Bazgir Synlett (2007), p. 821

[33] M. Dabiri; H. Arvin-Nezhad; H.R. Khavasi; A. Bazgir Tetrahedron, 63 (2007), p. 1770

[34] M. Dabiri; A.S. Delbari; A. Bazgir Heterocycles, 71 (2007), p. 543

[35] R. Ghahremanzadeh; G.I. Shakibaei; A. Bazgir Synlett (2008), p. 1129

[36] S. Ahadi; H.R. Khavasi; A. Bazgir Chem. Pharm. Bull., 56 (2008), p. 1328

[37] M. Sayyafi; A. Abolhasani Sooreki; A. Bazgir Chem. Pharm. Bull., 56 (2008), p. 1289

[38] G.I. Shakibaei; H.R. Khavasi; P. Mirzaei; A. Bazgir J. Heterocycl. Chem., 45 (2008), p. 1481

[39] M. Dabiri; S.C. Azimi; H.R. Khavasi; A. Bazgir Tetrahedron, 64 (2008), p. 7307

[40] A. Bazgir; Z. Noroozi Tisseh; P. Mirzaei Tetrahedron Lett., 49 (2008), p. 5165

[41] R. Ghahremanzadeh; S. Ahadi; M. Sayyafi; A. Bazgir Tetrahedron Lett., 49 (2008), p. 4479

[42] Z. Noroozi Tisseh; S.C. Azimi; P. Mirzaei; A. Bazgir Dyes Pigm., 79 (2008), p. 273

[43] A. Bazgir; M. Mohammadi Khanaposhtani; A. Abolhasani Soorki Bioorg. Med. Chem. Lett., 18 (2008), p. 5800

[44] NCCLS, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, which Grows Aerobically, fifth ed., Approved Standard M7-A5, NCCLS, Villanova, PA, 2000.


Comments - Policy