Plan
Comptes Rendus

Efficient TMG catalyzed synthesis of 1,2,3-triazoles
Comptes Rendus. Chimie, Volume 16 (2013) no. 12, pp. 1086-1090.

Résumé

A practical and efficient method for the synthesis of 1,2,3-triazoles via the cycloaddition reaction of azides and CH-acids in the presence of 1,1,3,3-tetramethylguanidine (TMG) in ethanol at 30 °C has been reported. The simple experimental procedure, short reaction times, and good yields are the advantages of the present method.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2013.05.006
Mots clés : Azide, Triazole, Tetramethylguanidine, CH-acid
Fereshteh Ahmadi 1 ; Zeinab Noroozi Tisseh 1 ; Minoo Dabiri 1 ; Ayoob Bazgir 1

1 Department of Chemistry, Shahid Beheshti University, General Campus, Tehran 1983963113, Iran
@article{CRCHIM_2013__16_12_1086_0,
     author = {Fereshteh Ahmadi and Zeinab Noroozi Tisseh and Minoo Dabiri and Ayoob Bazgir},
     title = {Efficient {TMG} catalyzed synthesis of 1,2,3-triazoles},
     journal = {Comptes Rendus. Chimie},
     pages = {1086--1090},
     publisher = {Elsevier},
     volume = {16},
     number = {12},
     year = {2013},
     doi = {10.1016/j.crci.2013.05.006},
     language = {en},
}
TY  - JOUR
AU  - Fereshteh Ahmadi
AU  - Zeinab Noroozi Tisseh
AU  - Minoo Dabiri
AU  - Ayoob Bazgir
TI  - Efficient TMG catalyzed synthesis of 1,2,3-triazoles
JO  - Comptes Rendus. Chimie
PY  - 2013
SP  - 1086
EP  - 1090
VL  - 16
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crci.2013.05.006
LA  - en
ID  - CRCHIM_2013__16_12_1086_0
ER  - 
%0 Journal Article
%A Fereshteh Ahmadi
%A Zeinab Noroozi Tisseh
%A Minoo Dabiri
%A Ayoob Bazgir
%T Efficient TMG catalyzed synthesis of 1,2,3-triazoles
%J Comptes Rendus. Chimie
%D 2013
%P 1086-1090
%V 16
%N 12
%I Elsevier
%R 10.1016/j.crci.2013.05.006
%G en
%F CRCHIM_2013__16_12_1086_0
Fereshteh Ahmadi; Zeinab Noroozi Tisseh; Minoo Dabiri; Ayoob Bazgir. Efficient TMG catalyzed synthesis of 1,2,3-triazoles. Comptes Rendus. Chimie, Volume 16 (2013) no. 12, pp. 1086-1090. doi : 10.1016/j.crci.2013.05.006. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2013.05.006/

Version originale du texte intégral

1 Introduction

1,2,3-Triazoles are very interesting compounds and have received considerable attention as a result of their therapeutic value as cytostatic [1], antiproliferative agents [2], and GABA-antagonists [3]. They are key intermediates in the synthesis of antibiotic [4], antihistaminic agents [5], muscarinic agonists for the treatment of Alzheimer's disease [6], and polyheterocycles with neuroleptic activity [7]. Additionally, triazole derivatives have been widely employed in industry [8–11]. Therefore, numerous methods have been reported for the preparation of 1,2,3-triazoles, including the cyclization of triazenes [12,13], the synthesis of triazoles by Wolff [14], and the cyclization of α-diazoamides [15]. However, most of these protocols have some disadvantages and require multistep synthetic methods. Thermal Huisgen 1,3-dipolar cycloadditions of azides and alkynes, because of the high activation energy [16,17], are usually very slow and are likely to generate mixtures of regioisomers. Recently, Sharpless [18] and Meldal [19] reported copper(I)-catalyzed Huisgen 1,3-dipolar cycloadditions of azides and alkynes (CuAAC) under mild conditions for the highly regioselective prepration of 1,4-disubstituted 1,2,3-triazoles in good yields. Notably, the reactions are only suited for terminal alkynes, and this limitation largely restricts the diverse application of this strategy in the preparation of 1,2,3-triazoles. The azide/alkyne [3+2] strategy has shown a broad variety of application prospects in polymeric materials science [20–22]. Very recently, catalytic reaction of azides and active or unactive methylene compounds has proven to be a powerful strategy for the synthesis of a variety of monocyclic and bicyclic 1,2,3-triazole derivatives with different substituents. This triazole formation approach is less developed and only a limited number of catalysts have been reported [23–27]. Thus, the development of a convenient and safe process using new catalysts with high catalytic activity for the preparation of 1,2,3-triazoles is an interesting target for investigation.

Herein, we would like to report a facile, and practical process for synthesis of 1,2,3-triazoles catalyzed by TMG via a cycloaddition reaction of CH-acids and azides.

2 Results and discussion

Our initial experiments were focused on the reaction of ethyl acetoacatate 1a (1 mmol) and 1-azido-4-nitrobenzene 2a (1 mmol) as a model reaction in the presence of TMG in EtOH at 30 °C (Scheme 1). To study the effect of the amount of catalyst, the reactions were carried out with different amounts of TMG ranging from 10 to 20 mol%. It was found that when increasing the amount of the TMG from 10 to 15, and 20 mol %, the yields increased from 73 to 81 and 82%, respectively. It was found that 15 mol % TMG in EtOH is sufficient to push this reaction forward. More amounts of TMG did not improve the yields. When this reaction was carried out without TMG, the yield of the expected product was trace. To search for the optimal reaction solvent, various solvents, such as EtOH, MeOH, H2O, CHCl3, and MeCN were screened in the model reaction at 30 °C. It was found that the reaction using EtOH resulted in higher yield after 50 min (Scheme 1).

Scheme 1

Synthesis of ethyl 5-methyl-1-(4-nitrophenyl)-riazole-4-carboxylate.

According to the optimized conditions, a variety of CH-acids 1 and azides 2 were employed under similar circumstances to evaluate the substrate scope of the reaction and 1,2,3-triazoles 3 were obtained in good isolated yields (Table 1). We have shown that these reactions preceded very cleanly under mild reaction conditions at 30 °C and the use of a wide diversity of CH-acids and aryl azides in this reaction makes possible the synthesis of libraries under similar circumstances. However, when this methodology was investigated by the reaction of CH-acids with benzyl azide, the TLC and 1H NMR spectra of the reactions mixture showed a combination of starting materials and numerous products, the expected product was obtained in only trace amounts.

Table 1

Synthesis of 1,2,3-triazoles 3.

Product 3R1R2XTime (min)Yield (%)
aMeCO2Et4-NO25081
bMeCO2Me4-NO24577
cPhCN4-NO25070
dPhCO2Et4-NO212073
e4-NO2C6H4CO2Et4-NO24577
fMeCO2Et3-NO29081
gMeCO2Me3-NO29075
hPhCN3-NO29071
iPhCO2Et3-NO216071
jMeCO2Et4-Cl6080
kMeCO2Me4-Cl7076
lMeCO2Et4-Me18080
mMeCO2Me4-Me14072
nMeCO2Et4-MeO18068

Table 2 compares the efficiency of TMG with that of other reported catalysts in the synthesis of 1,2,3-triazoles via the reaction of ethyl acetoacatate 1a and 1-azido-4-nitrobenzene 2a. It is clear from Table 2 that our method is more efficient for the synthesis of 1,2,3-triazoles derivatives.

Table 2

Comparison of efficiency of various catalysts in synthesis of triazolesa.

CatalystTMGProlineEt3NEt2NH
Yield (%)81< 204135

a Ethyl acetoacatate 1a (1 mmol), 1-azido-4-nitrobenzene 2a (1 mmol) and catalyst (15 mol%) in EtOH at 30 °C for 50 min.

We have not established an exact mechanism for the formation of 3; however, a reasonable possibility is shown in Scheme 2 [27].

Scheme 2

Proposed mechanism.

Finally, to further explore the potential of the reaction, we investigated the reaction of cyclic 1,3-diketones 4 with azides 2 and obtained bicyclic or tricyclic triazoles 5 in good isolated yields (Scheme 3).

Scheme 3

Reaction of cyclic 1,3-diketones 4 with azides 2.

In conclusion, we have developed a simple and efficient protocol for the synthesis of 1,2,3-triazoles using TMG as an organocatalyst under mild reaction conditions.

3 Experimental

3.1 Materials and techniques

The melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. 1H and 13C NMR spectra were recorded on a Bruker DRX-300 Avance spectrometer at 300.13 and 75.47 MHz, respectively. 1H and 13C NMR spectra were obtained with solutions in DMSO-d6. IR spectra were recorded using a Bomem MB-Series device. Elemental analyses were performed using a Heracus CHN-O-Rapid analyzer. The chemicals used in this work were obtained from Fluka and Merck and were used without purification.

3.2 Typical procedure for the preparation of 1,2,3-triazoles

A mixture of CH-acid (1 mmol), azide (1 mmol) and TMG (15 mol%) in EtOH (5 ml) was stirred for an appropriate time at 30 °C. After completion (TLC), the solvent was removed under reduced pressure. The residue was washed with ether (5 mL) and recrystallized from CHCl3/n-hexane (1:3) to afford the pure product.

3.3 Spectral data

3.3.1 Ethyl 5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (3a)

White powder; yield: 223.76 mg (81%); Mp 181–184 °C. IR (KBr) (νmax/cm−1): 1725, 1592, 1531, 1434. 1H NMR (300 MHz, DMSO-d6): δ = 1.43 (3H, t, 3JHH = 7.1 Hz, CH3), 2.68 (3H, s, CH3), 4.45 (2H, q, 3JHH = 7.1 Hz, OCH2), 7.74 (2H, d, 3JHH = 8.9 Hz, H–Ar), 8.45 (2H, d, 3JHH = 8.9 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.2, 14.3, 61.3, 125.2, 125.9, 137.4, 138.8, 140.2, 148.1, 161.3. Anal. calcd for C12H12N4O4: C, 52.17; H, 4.38; N, 20.28%. Found: C, 52.10; H, 4.32; N, 20.21.

3.3.2 Methyl 5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (3b)

White powder; yield: 201.90 mg (77%); Mp 172–175 °C. IR (KBr) (νmax/cm−1): 1732, 1617, 1527, 1501, 1450. 1H NMR (300 MHz, DMSO-d6): δ = 2.70 (3H, s, CH3), 4.01 (3H, s, OCH3), 7.75 (2H, d, 3JHH = 8.0 Hz, H–Ar), 8.47 (2H, d, 3JHH = 8.0 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.2, 52.5, 125.2, 125.8, 137.2, 138.9, 140.1, 148.2, 161.7. Anal. Calcd for C11H10N4O4: C, 50.38; H, 3.84; N, 21.37%. Found: C, 50.29; H, 3.89; N, 21.29.

3.3.3 1-(4-Nitrophenyl)-5-phenyl-1H-1,2,3-triazole-4-carbonitrile (3c)

White powder; yield: 203.88 mg (70%); Mp 162–165 °C. IR (KBr) (νmax/cm−1): 2238, 1597, 1533, 1495. 1H NMR (300 MHz, DMSO-d6): δ = 7.35–7.48 (2H, m, H–Ar), 7.49–7.61 (4H, m, H–Ar), 8.33–8.36 (2H, d, 3JHH = 8.8 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 111.4, 121.3, 122.5, 125.2, 125.7, 128.9, 129.8, 131.7, 139.8, 143.4, 148.2. Anal. calcd for C15H9N5O2: C, 61.85; H, 3.11; N, 24.04%. Found: C, 61.95; H, 3.19; N, 23.98.

3.3.4 Ethyl 1-(4-nitrophenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate (3d)

White powder; yield: 246.97 mg (73%); Mp 130–133 °C. IR (KBr) (νmax/cm−1): 1712, 1528, 1347, 1224, 1105. 1H NMR (300 MHz, DMSO-d6): δ = 2.58 (3H, bs, CH3), 5.41 (2H, bs, OCH2), 7.37–7.50 (5H, m, H–Ar), 7.98 (2H, d, 3JHH = 8.2 Hz, H–Ar), 8.48 (2H, d, 3JHH = 8.2 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.3, 66.5, 125.5, 127.0, 128.7, 128.8, 129.0, 136.2, 136.4, 140.3, 140.6, 148.3, 161.2. Anal. calcd for C17H14N4O4: C, 60.35; H, 4.17; N, 16.56%. Found: 60.28; H, 4.12; N, 16.49.

3.3.5 Ethyl 1,5-bis(4-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (3e)

White powder; yield: 295.15 mg (77%); Mp 159–162 °C. IR (KBr) (νmax/cm−1): 1724, 1525, 1347, 1222, 1075. 1H NMR (300 MHz, DMSO-d6): δ = 1.16 (3H, t, 3JHH = 6.9 Hz, CH3), 4.24 (2H, q, 3JHH = 6.9 Hz, OCH2), 7.69 (2H, d, 3JHH = 8.5 Hz, H–Ar), 7.75 (2H, d, 3JHH = 8.2 Hz, H–Ar), 8.28 (2H, d, 3JHH = 8.2 Hz, H–Ar), 8.34 (2H, d, 3JHH = 8.5 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 14.2, 61.4, 123.7, 125.4, 127.5, 132.4, 132.6, 137.5, 139.9, 140.1, 148.2, 148.7, 160.3. Anal. calcd for C17H13N5O6: 53.27; H, 3.42; N, 18.27%. Found: C, 53.14; H, 3.50; N, 18.35.

3.3.6 Ethyl 5-methyl-1-(3-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (3f)

White powder; yield: 218.23 mg (81%); Mp 144–146 °C. IR (KBr) (νmax/cm−1): 1724, 1537, 1425. 1H NMR (300 MHz, DMSO-d6): δ = 1.34 (3H, t, 3JHH = 7.4 Hz, CH3), 2.56 (3H, s, CH3), 4.37 (2H, q, 3JHH = 7.4 Hz, OCH2), 7.95 (1H, t, 3JHH = 7.5 Hz, H–Ar), 8.13 (1H, d, 3JHH = 7.9 Hz, H–Ar), 8.46–8.52 (2H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.1, 14.6, 61.0, 112.4, 124.3, 126.8, 137.6, 138.4, 138.8, 140.6, 147.7, 162.1. Anal. calcd for C12H12N4O4: C, 52.17; H, 4.38; N, 20.28%. Found: C, 52.27; H, 4.31; N, 20.34.

3.3.7 Methyl 5-methyl-1-(3-nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (3g)

White powder; yield: 196.55 mg (75%); Mp 134–135 °C. IR (KBr) (νmax/cm−1): 1725, 1537, 1527, 1434. 1H NMR (300 MHz, DMSO-d6): δ = 2.55 (3H, s, CH3), 4.35 (3H, s, OCH3), 7.94 (1H, t, 3JHH = 7.3 Hz, H–Ar), 8.11 (1H, d, 3JHH = 7.7 Hz, H–Ar), 8.46–8.52 (2H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 9.9, 52.3, 112.7, 124.0, 126.8, 137.9, 138.1, 138.7, 140.9, 147.8, 161.8. Anal. calcd for C11H10N4O4: C, 50.38; H, 3.84; N, 21.37%. Found: C, 50.26; H, 3.75; N, 21.44.

3.3.8 1-(3-Nitrophenyl)-5-phenyl-1H-1,2,3-triazole-4-carbonitrile (3h)

White powder; yield: 206.61 mg (71%); Mp 150–152 °C. IR (KBr) (νmax/cm−1): 2235, 1604, 1535, 1499. 1H NMR (300 MHz, DMSO-d6): δ = 7.46–7.57 (5H, m, H–Ar), 7.81–7.94 (2H, m, H–Ar), 8.42–8.44 (2H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 110.9, 121.7, 122.3, 125.2, 126.1, 126.4, 128.1, 130.2, 130.4, 131.8, 139.5, 143.8, 148.0. Anal. calcd for C15H9N5O2: C, 61.85; H, 3.11; N, 24.04%. Found: C, 61.28; H, 3.06; N, 24.10.

3.3.9 Ethyl 1-(3-nitrophenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate (3i)

White powder; yield: 239.98 mg (71%); Mp 160–162 °C. IR (KBr) (νmax/cm−1): 1729, 1527, 1347, 1217, 1069. 1H NMR (300 MHz, DMSO-d6): δ = 1.16 (3H, t, 3JHH = 6.9 Hz, CH3), 4.24 (2H, q, 3JHH = 6.9 Hz, OCH2), 7.75–7.85 (5H, m, H–Ar), 8.25–8.28 (2H, m, H–Ar), 8.35–8.39 (2H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 14.2, 61.4, 121.6, 123.6, 125.4, 130.2, 131.6, 132.4, 132.6, 136.0, 137.3, 140.1, 148.3, 148.6, 160.3. Anal. calcd for C17H14N4O4: C, 60.35; H, 4.17; N, 16.56%. Found: C, 60.26; H, 4.12; N, 16.49.

3.3.10 Ethyl 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (3j)

White powder; yield: 212.0 mg (80%); Mp 155–158 °C. IR (KBr) (νmax/cm−1): 1715, 1566, 1498, 1421, 1244, 1106. 1H NMR (300 MHz, DMSO-d6): δ = 1.36 (3H, t, 3JHH = 7.0 Hz, CH3), 2.52 (3H, s, CH3), 4.38 (2H, q, 3JHH = 7.0 Hz, OCH2), 7.61–7.70 (4H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.1, 14.6, 60.95, 127.7, 130.2, 134.3, 135.3, 136.3, 139.9, 161.4. Anal. calcd for C12H12ClN3O2: C, 54.25; H, 4.55; N, 15.82%. Found: C, 54.34; H, 4.61; N, 15.77.

3.3.11 Methyl 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (3k)

White powder; yield: 190.76 mg (76%); Mp 171–173 °C. IR (KBr) (νmax/cm−1): 1724, 1566, 1437, 1248, 1110. 1H NMR (300 MHz, DMSO-d6): δ = 2.50 (3H, s, CH3), 3.90 (3H, s, OCH3), 7.63–7.72 (4H, m, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.1, 52.2, 127.7, 130.2, 134.3, 135.2, 136.1, 140.0, 161.9. Anal. calcd for C11H10ClN3O2: C, 52.50; H, 4.01; N, 16.70%. Found: C, 52.56; H, 3.97; N, 16.64.

3.3.12 Ethyl 5-methyl-1-(p-tolyl)-1H-1,2,3-triazole-4-carboxylate (3l)

White powder; yield: 196.0 mg (80%); Mp 136–138 °C. IR (KBr) (νmax/cm−1): 1711, 1515, 1429, 1239, 1107. 1H NMR (300 MHz, DMSO-d6): δ = 1.33 (3H, t, 3JHH = 7.0 Hz, CH3), 2.42 (3H, s, CH3), 2.50 (3H, s, CH3), 4.35 (2H, q, 3JHH = 7.0 Hz, OCH2), 7.44 (2H, d, 3JHH = 8.1 Hz, H–Ar), 7.50 (2H, d, 3JHH = 8.1 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 10.1, 14.6, 21.21, 60.8, 125.7, 130.5, 133.1, 136.1, 139.7, 140.4, 161.5. Anal. calcd for C13H15N3O2: C, 63.66; H, 6.16; N, 17.13%. Found: C, 63.60; H, 6.23; N, 17.20.

3.3.13 Methyl 5-methyl-1-(p-tolyl)-1H-1,2,3-triazole-4-carboxylate (3m)

White powder; yield: 166.32 mg (72%); Mp 133–135 °C. IR (KBr) (νmax/cm−1): 1709, 1523, 1421, 1248. 1H NMR (300 MHz, DMSO-d6): δ = 2.40 (3H, s, CH3), 2.53 (3H, s, CH3), 4.31 (3H, s, OCH3), 7.37 (2H, d, 3JHH = 7.8 Hz, H–Ar), 7.51 (2H, d, 3JHH = 7.8 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 14.1, 21.30, 61.3, 125.7, 130.2, 133.4, 135.7, 139.6, 140.7, 161.0. Anal. Calcd for C12H13N3O2: C, 62.33; H, 5.67; N, 18.17%. Found: C, 62.25; H, 5.72; N, 18.11.

3.3.14 Ethyl 1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (3n)

White powder; yield: 177.48 mg (68%); Mp 137–139 °C. IR (KBr) (νmax/cm−1): 1712, 1513, 1248. 1H NMR (300 MHz, DMSO-d6): δ = 1.46 (3H, t, 3JHH = 7.2 Hz, CH3), 2.56 (3H, s, CH3), 3.89 (3H, s, OCH3), 4.47 (2H, q, 3JHH = 7.2 Hz, OCH2), 7.06 (2H, d, 3JHH = 7.9 Hz, H–Ar), 7.35 (2H, d, 3JHH = 7.9 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 9.9, 14.7, 54.1, 60.9, 120.4, 129.5, 134.1, 135.6, 140.0, 143.2, 161.1. Anal. calcd for C13H15N3O2: C, 59.76; H, 5.79; N, 16.08%. Found: C, 59.69; H, 5.74; N, 16.13.

3.3.15 1-(4-Nitrophenyl)-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (5a)

White powder; yield: 230.40 mg (72%); Mp 264–266 °C. IR (KBr) (νmax/cm−1): 2917, 1658, 1561, 1507. 1H NMR (300 MHz, DMSO-d6): δ = 7.94–8.02 (2H, m, H–Ar), 8.15 (2H, d, 3JHH = 8.4 Hz, H–Ar), 8.25–8.27 (2H, m, H–Ar), 8.53 (2H, d, 3JHH = 8.4 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 124.7, 125.1, 127.2, 127.4, 127.5, 133.0, 133.7, 135.3, 135.6, 140.2, 145.4, 148.8, 174.4, 177.4. Anal. calcd for C16H8N4O4: C, 60.00; H, 2.52; N, 17.49%. Found: C, 59.95; H, 2.47; N, 17.41.

3.3.16 1-(3-Nitrophenyl)-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (5b)

Orange powder; yield: 240.0 mg (75%); Mp 238–240 °C. IR (KBr) (νmax/cm−1): 2917, 1658, 1561, 1507. 1H NMR (300 MHz, DMSO-d6): δ = 7.97–8.15 (4H, m, H–Ar), 8.25–8.28 (2H, m, H–Ar), 8.55 (1H, bs, H–Ar), 8.78 (1H, bs, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 121.2, 125.8, 127.4, 127.6, 131.4, 132.3, 132.4, 133.1, 133.4, 135.3, 135.6, 136.2, 147.5, 148.2, 174.5, 177.4. Anal. calcd for C16H8N4O4: C, 60.00; H, 2.52; N, 17.49%. Found: C, 59.91; H, 2.59; N, 17.43.

3.3.17 6,6-Dimethyl-1-(4-nitrophenyl)-6,7-dihydro-1H-benzo[d][1,2,3]triazol-4(5H)-one (5c)

Cream powder; yield: 177.32 mg (62%); Mp 267–269 °C. IR (KBr) (νmax/cm−1): 1694, 1598, 1513. 1H NMR (300 MHz, DMSO-d6): δ = 1.06 (6H, s, 2 CH3), 2.52 (2H, s, CH2), 3.10 (2H, s, CH2), 8.04 (2H, d, 3JHH = 8.5 Hz, H–Ar), 8.49 (2H, d, 3JHH = 8.5 Hz, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 28.0, 34.6, 36.0, 52.2, 124.9, 125.8, 140.4, 142.1, 145.6, 147.9, 190.1. Anal. calcd for C14H14N4O3: C, 58.73; H, 4.93; N, 19.57%. Found: C, 58.65; H, 4.85; N, 19.52.

3.3.18 6,6-Dimethyl-1-(3-nitrophenyl)-6,7-dihydro-1H-benzo[d][1,2,3]triazol-4(5H)-one (5d)

Cream powder; yield: 171.60 mg (60%); Mp 204–206 °C. IR (KBr) (νmax/cm−1): 1694, 1598, 1513. 1H NMR (300 MHz, DMSO-d6): δ = 1.06 (6H, s, 2 CH3), 2.50 (2H, overlap with solvent, CH2), 3.06 (2H, s, CH2), 7.94–7.99 (1H, m, H–Ar), 8.18–8.21 (1H, m, H–Ar), 8.44–8.47 (1H, d, H–Ar), 8.53 (1H, s, H–Ar). 13C NMR (75 MHz, DMSO-d6): δ = 28.1, 34.2, 36.0, 52.3, 119.2, 124.8, 130.4, 132.0, 136.3, 143.3, 145.8, 148.8, 190.2. Anal. Calcd for C14H14N4O3: C, 58.73; H, 4.93; N, 19.57%. Found: C, 58.83; H, 4.99; N, 19.50.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Shahid Beheshti University.


Bibliographie

[1] Y.S. Sanghvi; B.K. Battacharya; G.D. Kini; S.S. Matsomotu; S.B. Larson; W.B. Jolley; R.K. Robins; G.R. Revankar J. Med. Chem., 33 (1990), p. 336

[2] D.J. Hupe; R. Boltz; C.J. Cohen; J. Felix; E. Ham; D. Miller; D. Soderman; D.V. Skiver J. Biol. Chem., 266 (1991), p. 10136

[3] Z. Bascal; L. Holden-Dye; R.J. Willis; W.G. Smith; R.J. Walker Parasitology, 112 (1996), p. 253

[4] C. Peto; G. Batta; Z. Gyorgydeak; F. Sztaricskai J. Carbohydrate Chem., 15 (1996), p. 65

[5] D.R. Bukle; C.J.M. Rockell; H. Smith; B.A. Spicer J. Med. Chem., 29 (1986), p. 2262

[6] E.K. Moltzen; H. Pedersen; K.P. Bogeso; E. Meier; K. Frederiksen; C. Sanchez; K.L. Lembol J. Med. Chem., 37 (1994), p. 4085

[7] J.K. Chakrabarti; T.M. Hotten; I.A. Pullar; D.J. Steggles J. Med. Chem., 32 (1989), p. 2375

[8] K.H. Buechel, H. Gold, P.E. Frohberger, H. Kaspers, Ger. Pat. 2407305,1975 (Chem. Abstr. 83 (1975) 206290).

[9] F. Reisser, British Pat. 8101239, 1981 (Chem. Abstr. 91 (1981) 29006).

[10] A.M.S. Abdennabi; A.I. Abdolhadi; S.T. Abu-Orabi; H. Saricimen Corrosion Sci., 38 (1996), p. 1791

[11] J. Rody, M. Slongo, Eur. Pat. 80-810394 (1981) (Chem. Abstr.95 (1981) 187267).

[12] K.T. Potts; S.J. Husain J. Org. Chem., 35 (1970), p. 3451

[13] K.M. Baines; T.W. Rourke; K. Vaughan; D.L. Hooper J. Org. Chem., 46 (1981), p. 856

[14] L. Wolff Justus Liebigs Ann. Chem., 394 (1912), p. 23

[15] M. Regitz; W. Anschuetz Chem. Ber., 102 (1969), p. 2216

[16] V.O. Rodionov; V.V. Fokin; M.G. Finn Angew. Chem. Int. Ed., 117 (2005), p. 2250 Angew. Chem. Int. Ed. (2005) 44 2210.

[17] F. Himo; T. Lovell; R. Hilgraf; V.V. Rostovtsev; L. Noodleman; K.B. Sharpless; V.V. Fokin J. Am. Chem. Soc., 127 (2005), p. 210

[18] V.V. Rostovtsev; L.G. Green; V.V. Fokin; B.K. Sharpless Angew. Chem. Int. Ed., 41 (2002), p. 2596

[19] C.W. Tornøe; C. Christensen; M. Meldal J. Org. Chem., 67 (2002), p. 3057

[20] B.C. Norris; W. Li; E. Lee; A. Manthiram; C.W. Bielawski Polymer, 51 (2010), p. 5352

[21] Z. Chen; D.R. Dreyer; Z.-Q. Wu; K.M. Wiggins; Z. Jiang; C.W. Bielawski J. Polym. Sci. A: Polym. Chem., 49 (2011), p. 1421

[22] J.N. Brantley; K.M. Wiggins; C.W. Bielawski Science, 333 (2011), p. 1606

[23] F. Stazi; D. Cancogni; L. Turco; P. Westerduin; S. BacchiL Tetrahedron Lett., 51 (2010), p. 5385

[24] Y.A. Rozin; J. Leban; W. Dehaen; V.J. Nenajdenko; V.M. Muzalevskiy; O.S. Eltsov; V.A. Bakulev Tetrahedron, 68 (2012), p. 614

[25] X.-W. Sun; P.-F. Xu; Z.-Y. Zhang Magnet. Res. Chem., 36 (1998), p. 459

[26] M. Belkheira; D. El-Abed; J.-M. Pons; C. Bressy Chem. Eur. J., 17 (2011), p. 12917

[27] L.J.T. Danence; Y. Gao; M. Li; Y. Huang; Wang J. Chem. Eur. J., 17 (2011), p. 3584


Commentaires - Politique


Ces articles pourraient vous intéresser

One-pot four-component domino strategy for the synthesis of novel spirooxindole–pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: In vitro antibacterial and antifungal studies

Randa Sakly; Hayet Edziri; Moheddine Askri; ...

C. R. Chim (2018)


Catalyst-free synthesis of functionalized dihydro-2-oxypyrroles by the reaction of enaminones and N,N′-bis(phenylmethylidene)phenylmethane

Abdolali Alizadeh; Javad Mokhtari; Long-Guan Zhu

C. R. Chim (2013)


One-pot three-component reaction: Synthesis of substituted β-cyanocarbonyls in aqueous media

Ebrahim Soleimani; Mohammad Mehdi Khodaei; Afsaneh Taheri Kal Koshvandi

C. R. Chim (2012)