Plan
Comptes Rendus

Tectonics
Structural context of the paleogeography of the Cenomanian-Turonian anoxic event in the eastern Atlas basins of the Maghreb
[Contexte structural de la paléogéographie de l’évènement anoxique Cénomanien-Turonien dans les bassins est-atlasiques du Maghreb.]
Comptes Rendus. Géoscience, Volume 341 (2009) no. 12, pp. 1029-1037.

Résumés

Le cadre structural régional du passage Cénomanien-Turonien (C/T), couplé aux données de la subsidence déduites des cartes paléogéographique et des sédiments riches en matière organique du C/T, de plusieurs bassins, puits et affleurements de Tunisie et d’Algérie orientale, a été l’objet de l’étude présentée ici. Il a fourni de précieuses données sur la structure et l’évolution sédimentaire de cette partie de la marge sud de la Téthys au cours du passage C/T. Cette période est caractérisée par le développement de structures extensives, avec des blocs basculés, grabens et failles listriques. La subsidence au cours du passage C/T a conduit à l’accumulation d’une épaisse séquence de black shales feuilletés et de marnes (jusqu’à 80 m d’épaisseur dans le Nord-Ouest de la Tunisie et environ 100 m d’épaisseur dans le sillon Aurès-Kef en Algérie orientale). De fortes variations d’épaisseur et de faciès vers le nord-est et nord indiquent que la subsidence du bassin a été stimulée par les mouvements tectoniques régionales le long de failles normales de directions NW-SE, NE-SW et est-ouest issues du rifting Téthysien. La réduction des zones emergées depuis le Cénomanien, déduite de la carte paléogéographique, est mise en évidence. L’évolution globale est également amplifiée par les mouvements diapirique, du Trias créant des rim-synclines subsidents, où les faciès riches en matière organique ont prévalu.

The regional Cenomanian-Turonian (C/T) structural framework of surface and subsurface coupled with subsidence data inferred from palegeographic and organic-rich C/T isopachus maps, generated in this work, from several basins, wells and outcrops of Tunisia and eastern Algeria were investigated and provide constraints on the structural and sedimentary evolution of this part of the southern Tethyan margin during the C/T times. This period is characterized by the development of extensional structures with tilted blocks and grabens, bounded listric normal faults. Subsidence during C/T time led to the accumulation of a thick sequence of laminated black shales and marls (up to 80 m thick in northwestern Tunisia and about 100 m thick in the Aures-Kef trough in northeastern Algeria). Sharp variations in thickness and facies towards the north and northeast indicate that basin subsidence was driven by regional tectonic movements along NW-SE, NE-SW and east-west trending normal faults issued from Tethyan rifting of the Upper Jurassic-Lower Cretaceous. The reduction of emerged areas since the Cenomanian inferred from the generated palaeogeographic map is demonstrated. The overall evolution is also maintained by halokinesis of Triassic salt creating subsident rim-synclines, where organic-rich facies prevail.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2009.07.003
Mot clés : Cénomanien-Turonien, Tunisie, Algérie, Paléogéographie, Halocinèse, Horsts, Grabens
Mot clés : Cenomanian-Turonian, Tunisia, Algeria, Paleogeography, Halokinesis, Horsts, Grabens
Mohamed Soua 1 ; Oussema Echihi 1 ; Missoum Herkat 2 ; Dalila Zaghbib-Turki 3 ; Jalel Smaoui 1 ; Hela Fakhfakh-Ben Jemia 1 ; Houda Belghaji 1

1 Entreprise tunisienne d’activités pétrolières, ETAP–CRDP, 4, rue des Entrepreneurs, La Charguia II 2035, Tunisia
2 Université des sciences et de la technologie Houari-Boumediene, BP 32, El Alia, Bab Ezzouar, Alger, Algeria
3 Département des sciences de la terre, faculté des sciences de Tunis, université Tunis El Manar, 1060 Tunis, Tunisia
@article{CRGEOS_2009__341_12_1029_0,
     author = {Mohamed Soua and Oussema Echihi and Missoum Herkat and Dalila Zaghbib-Turki and Jalel Smaoui and Hela Fakhfakh-Ben Jemia and Houda Belghaji},
     title = {Structural context of the paleogeography of the {Cenomanian-Turonian} anoxic event in the eastern {Atlas} basins of the {Maghreb}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {1029--1037},
     publisher = {Elsevier},
     volume = {341},
     number = {12},
     year = {2009},
     doi = {10.1016/j.crte.2009.07.003},
     language = {fr},
}
TY  - JOUR
AU  - Mohamed Soua
AU  - Oussema Echihi
AU  - Missoum Herkat
AU  - Dalila Zaghbib-Turki
AU  - Jalel Smaoui
AU  - Hela Fakhfakh-Ben Jemia
AU  - Houda Belghaji
TI  - Structural context of the paleogeography of the Cenomanian-Turonian anoxic event in the eastern Atlas basins of the Maghreb
JO  - Comptes Rendus. Géoscience
PY  - 2009
SP  - 1029
EP  - 1037
VL  - 341
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crte.2009.07.003
LA  - fr
ID  - CRGEOS_2009__341_12_1029_0
ER  - 
%0 Journal Article
%A Mohamed Soua
%A Oussema Echihi
%A Missoum Herkat
%A Dalila Zaghbib-Turki
%A Jalel Smaoui
%A Hela Fakhfakh-Ben Jemia
%A Houda Belghaji
%T Structural context of the paleogeography of the Cenomanian-Turonian anoxic event in the eastern Atlas basins of the Maghreb
%J Comptes Rendus. Géoscience
%D 2009
%P 1029-1037
%V 341
%N 12
%I Elsevier
%R 10.1016/j.crte.2009.07.003
%G fr
%F CRGEOS_2009__341_12_1029_0
Mohamed Soua; Oussema Echihi; Missoum Herkat; Dalila Zaghbib-Turki; Jalel Smaoui; Hela Fakhfakh-Ben Jemia; Houda Belghaji. Structural context of the paleogeography of the Cenomanian-Turonian anoxic event in the eastern Atlas basins of the Maghreb. Comptes Rendus. Géoscience, Volume 341 (2009) no. 12, pp. 1029-1037. doi : 10.1016/j.crte.2009.07.003. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2009.07.003/

Version originale du texte intégral

1 Introduction

From the Late Triassic to the Cenomanian times, North Africa was characterised by an extensional regime associated with both the opening of the central Atlantic [9,31] and northward drift of the eastern part of the Apulian block [11,13,21,34].

Otherwise, the Mid-Cretaceous is thought to be characterized by a decrease in the tectonic activity and the most intense Phanerozoic flooding event as the Latest Cenomanian eustatic transgression [14,15,36] concomitant to the fast Atlantic seafloor spreading. Rifting occurred along the northern margin of the African plate as a result of left-lateral movement between the African and Eurasian plates, resulting in a complex horsts and grabens system trending NW to SE (Fig. 1) [13,19,21]. Associated fault displacements and uplift of horst blocks controlled sedimentation [21,22,26].

Fig. 1

Tectonic map of the eastern Maghrebian Domain, age and nature of the main structural elements across North Africa. The outline of the major Mesozoic basins is well reflected in the pattern of subcropping stratigraphy modified from [5,10,13,16,30].

Carte structurale du domaine maghrébin oriental, âge et nature des principaux éléments à travers l’Afrique du Nord. L’esquisse des principaux bassins mésozoïques est très connue en subsurface, modifiée de [5,10,13,16,30].

Compiling different data including seismic, sedimentological cross sections from petroleum wells or from outcrops integrated with previous works, we tentatively present an isopach paleogeographic map of the Cenomanian-Turonian (C/T) transition in the Maghrebian western Atlas basins in Tunisia and eastern Algeria (Fig. 3).

Fig. 3

Facies and thickness of the organic-rich Late Cenomanian-Early Turonian and age equivalent units in Tunisia and eastern Algeria superposed on the structural setting of the eastern Maghrebian Domain during the C/T transition (inferred from the palaeogeographic map). Note the east-west trending faults are related to the Tethys rifting and the NW-SE trending faults are related to the Sirte rifting ([10] and references therein). Base map and isopach data modified after [2,24,32,33,36]; facies zones modified after [2,24,36]. Note that the isopach trends illustrated are simplified and short-distance thickness, and facies changes occur, related to the complex tectono-halokinetic palaeorelief at the time (Fig. 4). Organic-rich and carbonate or age equivalent units are not present on present palaeohigh.

Faciès et épaisseur des sédiments riches en matière organique du Cénomanien-Turonien et leurs équivalents latéraux en Tunisie et en Algérie orientale, superposés sur le cadre structural du domaine maghrébin oriental durant le passage C/T (déduit de la carte palégéographique). Noter que les failles de direction est-ouest sont liées au rifting Téthysien et que les failles de direction NW-SE sont liées à l’ouverture de bassin de Sirte (ex. [10] et les références citées dans cet article). La carte de base et les isopaques sont modifiés de [2,24,32,33,36] ; les zones de changement de faciès sont modifiées de [2,24,36]. Notez que les isopaques figurés sont simplifiés et que les changements de faciès et d’épaisseur à courte distance sont liés au paléorelief complexe tectono-halocinétique (Fig. 4). Les sédiments C/T ne sont pas présents sur les paléo-haut fonds actuels.

Structurally and in a simplified manner, Tunisia and Algeria are composed of the Atlas Fold-and-Thrust belt to the north and the Saharan Platform, south of the South Atlas Front (SAF) (Fig. 1). They can be subdivided into: (1) a northern alpine-deformed subsident zone with thick Mesozoic and Cenozoic strata; and (2) a stable Palaeozoic province to the south where Middle Jurassic-Late Cretaceous is relatively thin [2,3,36]. In general, Cretaceous sedimentation on the Saharan Platform has been poorly affected by tectonic movements [4], with the exception of local strike-slip movements (Fig. 1). In the Atlas belt, however, deposition was strongly influenced by synsedimentary extensional phases.

2 Structural setting

The C/T organic-rich strata in onshore Tunisia/Algeria and offshore Tunisia are mainly found in the first province and the distribution of the organic content is strongly controlled by halfgraben systems [1,12,19,27,36] (Fig. 4), and in some areas by Triassic salt diapiric movements [28,30,36] during the Cretaceous (Figs. 4 and 5).

Fig. 4

The Cenomanian-Turonian sedimentation evolution amplified by Triassic diapirism creating subsident rim-synclines allowing stratified water conditions and high preserving sedimentation rates that occurred later during Upper-Cretaceous. North-south cross-sectional model along Mellegue-Kasserine-Gafsa trough. Data compiled after [1,28,32,33,36]. Note that Mellegue recorded 80 m thick laminated black shales and is considered as the Tunisian depocenter of the Cenomanian-Turonian sedimentation (lateral and vertical scale not considered).

Évolution de la sédimentation du Cénomanien-Turonien amplifiée par le diapirisme triasique créant des rime-synclines subsidents permettant la stratification de la colonne d’eau et la préservation de sédiments riches en MO qui seront déposés ultérieurement au cours du Crétacé supérieur. Coupe transversale le long d’un transect nord-sud : Mellègue-Kasserine-Sillon de Gafsa. Les données sont compilées d’après [1,28,32,33,36]. Notez que la région du Mellègue a enregistré 80 m d’épaisseur de black shales feuilletés, riches en MO ; celle-ci est considérée comme le dépocentre tunisien de la sédimentation C/T.

Fig. 5

Seismic interpretation in the Sahel foreland of the Atlas outlining Triassic salt movements linked to Tethyan Late Jurassic-Early Cretaceous rifting and subsequent thickening of the Cretaceous series in rim-synclines (adapted from Khomsi et al. [21]). Note that C/T evolution is influenced by Triassic diapirism creating subsident rim-synclines allowing stratified water conditions and preserving high sedimentation rates that occurred later during Upper-Cretaceous. In this figure, an attempt was carried out to draw the approximate C/T organic-rich sediments.

Interprétation sismique dans le Sahel, avant-pays de l’Atlas, mettant en relief d’une part les mouvements salifères du Trias liés au rifting Téthysien du Jurassique supérieur-Crétacé inférieur et d’autre part, l’épaississement du Crétacé dans les rim-synclines. (adapté de Khomsi et al. [21]). Notez que l’évolution de la sédimentation C/T est influencée par le diapirisme qui a créé des rim-synclines subsidents, permettant des conditions de stratification de la colonne d’eau et la préservation de forts taux se sédimentation qui se sont produits plus tard pendant le Crétace supérieur. Sur la figure, on a tenté de dessiner la position approchée du sédiments C/T, riches en matière organique.

The rift grabens formation is related to the opening of the Neotethys to the north [12] and central Atlantic to the southwest [29].

Notably, this rifting in onshore and on the shelf of Tunisia/Algeria did not begin before the Late Jurassic-Early Cretaceous [12,36,37,39]. However, the Late Triassic-Early Jurassic rifting is in fact associated with the separation of the eastern part of the Apulian micro-plate block [9,34] related at that time to the northern African Plate. Alternatively, in Morocco, during this period, related synrift sedimention consisted mainly of Jurassic carbonates and Early Cretaceous deltaic clastics where syndepositional rollover structures are developed [17,23] which might also have locally affected the anoxic C/T interval deposition.

So, two main Mesozoic rifting events occurred in this northern African margin (i.e. Algeria and Tunisia), namely: (1) the Late Jurassic to Early Aptian, associated with east-west-trending halfgrabens and related volcanism e.g. in the Pelagian block; and (2) from the post-Aptian to Early Cenomanian, associated with NW-SE trending halfgrabens [13,29].

In north-eastern Algeria, this extensional regime also resulted in the formation of graben and halfgraben systems, which controlled the distribution of carbonate platform and deeper basin facies, and therefore also of facies and organic richness of the C/T interval [13,16] (Figs. 2–4).

Fig. 2

Identification of the Bahloul Formation, main lithology and characteristics superposed to the global eustatic and coastal onlap curves of Haq et al. [14] and Hardenbol et al. [15], Cretaceous lithology as defined by Burollet [3]. Note that the pictures a–d are taken from El Kef area and the pictures e and f are taken from Gafsa area.

Identification de la Formation Bahloul, principales caractéristiques et lithologie superposées à la courbe eustatique globale de Haq et al. [14] et Hardenbol et al. [15], lithologie crétacéé selon Burollet [3]. Les photos a–d sont prises dans la région d’El Kef, les photos e et f sont prises dans la région de Gafsa.

These two recorded extensional phases were interrupted by a regional top-Aptian compressional phase (the Austrian phase) which is responsible for a typical unconformity detected in seismic profiles [13,18,21,22,29] and in outcrops. The general graben trends are locally complicated by other faults which have partly dissected the grabens into smaller segments [6]. This top-Aptian compressional phase affected also the Saharan Platform (e.g., Berkine Basin) and resulted likely from transpressional movements along the north-south trending Transaharian fracture system [13,36].

Commonly, around C/T times, a general change from extension to compression occurred in North Africa, which was related to the closing of the Neotethys and the onset of North-Atlantic rifting. This resulted in the inversion of the former rift grabens from the preceding extensional phase. However, some authors assume that the C/T period was characterized by extension activities associated with a transtension and strike-slip movement [16,24,25].

In Algeria, Mid-Cretaceous extension was most intense in some localities (e.g. Constantine Basin [5,16]), influenced by two principal extensional systems, the NE-SW trending Aures-Kef trough to the north and the NW-SE trending Negrine-Gafsa trough to the south. The first direction is probably inherited from the Tethys rifting; the second corresponds to the direction of the Sirte rift system. (Figs. 1, 3 and 4).

Extensional Infracretaceous tectonics [8] was used to explain C/T halfgraben tectonics, resulting in fragmentation into small tectonic blocks [7].

Some authors assume that the rift movements were somehow blocked [12] or were restrained [6] during the anoxic C/T deposition.

In northwestern and central Tunisia as well as on the Pelagian Province, Cretaceous diapiric movements of Triassic salt played a role locally in controlling C/T deposition [6,30,36] (Figs. 3–5). They are characterized by a marked thickness reduction and partly by development of a detrital level (sandstones, conglomerates) [30,36]. The diapiric rise, starting from Aptian (and even before) to approximately Middle Eocene was probably continuous, but it increased during periods of tectonic instability [12,30,36]. Thus, earlier diapiric movements and rise-up are super-imposed to the extensional features favouring depocenters individualisations in the central parts of rim-synclines (Figs. 3–5). In the eastern foreland, i.e. east of the north-south axis, seismic interpretations by Khomsi et al. [21,22] allowed to visualise properly such features (Fig. 5).

3 Cenomanian-Turonian palaeogeography map

Combination of C/T data identified a number of major features characterizing a key period of geological history of Tunisia and eastern Algeria.

During the C/T times, Tunisia and eastern Algeria, situated at the southern Tethyan margin, were characterised by a general slope almost dipping to the north, promoting variable facies ranging from littoral (Saharan platform), shelfal and probably lagoonal (southeastern Tunisia) to bathyal (central and northern Tunisia). The general facies trend was related to a complex tectonic and halokinetic paleo-elevation resulting in variations of the C/T facies [2,28,36] (Fig. 3).

Organic-rich C/T sediments occur in many places in northern, central and offshore Tunisia and are grouped into the Bahloul Formation. The thickness distribution of the anoxic C/T facies in Tunisia and Algeria is illustrated in Fig. 3. The regional distribution of the Tunisian C/T facies including the distinction of an organic-rich and an organic-lean anoxic facies, is shown in three main Provinces (Fig. 3). Mainly it is represented in Hodna basin, Aures-Kef Trough (eastern Algeria), onshore NW Tunisia, in the Gulf of Hammamet-Gabes and locally in the Negrine-Gafsa trough (Fig. 3). Well and outcrop data confirm these organic-rich provinces, and the exact boundaries have been clearly traced through this study, especially north of the Gulf of Gabes belt. Dealing with the Soua and Tribovillard's [36] model, the palaeogeographic setting suggests that the distribution of the organic-rich facies represents the impingement of an Oxygene Minimum Zone (OMZ) onto the southern Tethyan margin. This latter facies is generally 10–30 m thick, with a maximum thickness of 80 m recorded in the NW Tunisia (Hammem Mellegue section, Figs. 3 and 4), and it consists generally of shale and limestone alternations. Limestone is dark and thinly laminated wackstone/packstone, whereas, shale is organic-rich laminated black shales with TOC values up to 14% [33,36].

In Zaghouan-Bargou area (Figs. 3 and 4), the Latest Cenomanian-Early Turonian black shales facies [34] may continue up to the Early Coniacian age. The same age-equivalent black shales are present in Venezuela under Laluna Formation name [34].

Thus, it appears that the paleogeographic distribution, regional lithofacies, and areas of subsidence were depending on the sea level fluctuation and/or tectonic movements (Figs. 3 and 4). During this interval, installation of the major Uppermost Cenomanian transgression took place inducing the filling of the paleostructures and extension of the open marine sedimentation.

According to Grasso et al. [12], an Aptian-Cenomanian rifting phase took place on the Tunisian shelf and extending towards the north-south axis [38] to the south along the Tripolitania-Jarrafa-Sirte basins [3,19] (Fig. 1). Extension and normal faults during Late Cenomanian-Early Turonian can be inferred from seismic records [21,22] (Fig. 4).

No deposition of the anoxic C/T carbonate on uplifts and paleohighs is recorded (Figs. 3 and 4). During that time, high subsidence led to the accumulation up to 80 m of laminated black shales spanning about 0.4 Ma at least in the Tunisian sections [35].

In summary, we note the reduction of emerged areas since the Cenomanian (Fig. 3):

  • – to the west, the subsidence is controlled by a preferential NE-SW faulting trend (Aures basin-Kef) where maximum C/T subsidence is recorded;
  • – to the southwest, the subsidence is controlled by a preferential east-west faulting trend;
  • – to the east, the subsidence is mostly controlled by NW-SE faults;
  • – to the central and southern domains, there is development of a wide platform with low subsidence rate (Figs. 3 and 4).

4 Cenomanian-Turonian tectonic evolution

Basin formation dynamics during the C/T time, in Tunisia and eastern Algeria is characterized by subsidence heterogeneity due to the complex structural organization. Everywhere in the studied area, structural evidence shows that this margin was under extension from Triassic until Late Cretaceous. Basins geometry reflects the inherited pattern of highs and sub-basins, which can be the result of a combination of several mechanisms including Triassic salt movement and extensional regime. Schematic cross-sectional model is used here (Fig. 4) to explain our point of view in order to understand Tunisian and eastern Algerian basins formation during C/T times. So, we propose to give an overview of major structural domain and their tectonic evolution related to tectonic subsidence.

4.1 Structural domains during the Cenomanian-Turonian transition time

During the C/T time, the southern Tethyan margin was organized as several trending Horst and Graben systems, which are from west to east:

  • – NE-SW in the pre-Atlas domain;
  • – east-west and NE-SW in the Aures-Kef trough;
  • – NW-SE to WNW-ESE in Negrine-Gafsa trough;
  • – NW-SE in eastern Tunisia.

We note that these tectonic provinces are characterized by synsedimentary normal faults, which controlled facies and thickness variation from south to north and from west to east (Fig. 3). Late Cenomanian-Early Turonian strata become thicker and organic-rich in subsident domains (Aures-Kef trough, Negrine-Gafsa trough, Kerkenah basin and Hodna basin; Fig. 3) and carbonate facies with low subsidence on resistant blocks.

At Late Cenomanian-Early Turonian, a large part of Tunisia and eastern Algeria were flooded by the major eustatic transgression that is thought to have been the most intense Phanerozoic flooding event [15,36].

During this interval, the structural framework is dominated by tilted blocks which underwent individualizing subsidence zones with variable rates (Fig. 3). They are characterized by high subsidence rates (e.g. Mellegue: 200 m/Ma; Bargou: 160m/Ma; Gafsa: 120 m/Ma [35]; Pre-Atlas and Aures-Kef trough: more than 250 m/Ma [5]; Kerkenah area: 110 m/Ma [32]).

In eastern Algeria, the thickness increases towards the Aures-Kef trough, the Hodna basin and Negrine-Gafsa trough (Fig. 3). Synsedimentary normal faults emphasise an extensional event with a regional tilting eastwards and northwards. We note that the sedimentary subbasement become deeper from southwest to northeast (Figs. 3 and 4).

Alternatively, Tunisian trough has the same structural evolution manifested by tilted blocks with an increase of the subsidence. The thickness increases towards the north and the north-east (Fig. 3). This trough organisation is closely related to the Africa-Eurasia relative movement, the opening of the North-Atlantic Ocean in the west and the Sirte basin rifting in southeast (Fig. 1).

Resistant blocks are also trending NE-SW, east-west and NW-SE and are genetically related to inherited structures characterised by low and slow subsidence amplitudes (Figs. 3 and 4).

The C/T subsidence is mainly due to extensional regime coupled with Triassic salt movements and eustasy (Figs. 3–5).

5 Conclusion

The regional C/T tectonic evolution, coupled with subsidence interpreted from palegeographic and C/T isopachous maps on several basins, wells and outcrops of central Tunisia and northeastern Algeria [5,10,13,16,20,21,22,24,36], provides valuable constraints on the C/T structural and sedimentary evolution of this part of the southern Tethyan margin (Fig. 4). Crustal extension along this margin of the African plate started during the Early Cretaceous; however, continental break-up is thought to be occurring at about 180 Ma. Subsidence during C/T time led to the accumulation of a thick sequence (up to 80 m thick in Mellegue area, NW Tunisia and about 100 m thick through the Aures-Kef trough, NE Algeria; Fig. 3) of laminated black shales and marls. Sharp variations in thickness and facies towards the north and northeast indicate that basin subsidence was driven by regional tectonic movements along NW-SE, NE-SW and east-west trending normal faults issued from Tethys and Sirte riftings. The overall evolution is also amplified by Triassic diapirism creating subsident rim-synclines allowing stratified water conditions and high preserving sedimentation rates that occurred later during Upper Cretaceous (Figs. 3–5).

Acknowledgements

The paper substantially benefited from the comments by two anonymous reviewers, Mr. Jaques Angeliers and editor Mr. Michel Petit. Authors would thank ETAP for allowing us to publish some subsurface data.


Bibliographie

[1] H. Abdallah; C. Meister The Cenomanian-Turonian boundary in the Gafsa-Chott area (southern part of central Tunisia): biostratigraphy, palaeoenvironments, Cretac. Res., Volume 18 (1997), pp. 197-236

[2] W.F. Bishop Petroleum geology of East-Central Tunisia, AAPG Bull., Volume 72 (1988) no. 9, pp. 1033-1054

[3] P.F. Burollet Structures and tectonics of Tunisia, Tectonophysics, Volume 195 (1991), pp. 359-369

[4] G. Busson, Mesozoic of southern Tunisia, in: Guidebook to the geology and history of Tunisia, Petroleum Exploration Society of Libya, Ninth Annual Field Conference, 1967, pp. 131–151.

[5] R. Bracène; M. Patriat; N. Ellouz; J.M. Gaulier Subsidence history in basins of northern Algeria, Sedimentary Geology, Volume 156 (2003), pp. 213-239

[6] G.F. Camoin Sedimentologic and paleotectonic evolution of carbonate platforms on a segmented continental margin: example of the African Tethyan margin during Turonian and Early Senonian times, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 87 (1991), pp. 29-52

[7] A. Charrière Contexte paléogéographique et paléotectonique de la formation des bassins crétacés du Moyen Atlas (Maroc) à la lumière des données stratigraphiques récentes, Bull. Soc. Geol. France, Volume 167 (1996) no. 5, pp. 617-626

[8] R. Ensslin Cretaceous synsedimentary tectonics in the Atlas system of central Morocco, Geol. Rundsch., Volume 81 (1992), pp. 91-104

[9] A. Flexer; A. Rosenfeld; S. Lipson-Benitah; A. Honigstein Relative sea level changes during the Cretaceous in Israel, AAPG Bull., Volume 70 (1986), pp. 1685-1699

[10] D. Frizon de Lamotte, P. Leturmy, Y. Missenard, S. Khomsi, G. Ruiz, O. Saddiqi, et al., Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview, Tectonophysics 475 (2008) (1) 9–28.

[11] W.K. Gealey Plate tectonic evolution of the Mediterranean–Middle East region, Tectonophysics, Volume 155 (1988), pp. 285-306

[12] M. Grasso; L. Torelli; G. Mazzoldi Cretaceous–Palaeogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian islands (central Mediterranean), Tectonophysics, Volume 315 (1999), pp. 235-250

[13] R. Guiraud; Y. Bellion; J. Benkhelil; C. Moreau Post-Hercynian tectonics in northern and western Africa, Geol. J., Volume 22 (1987), pp. 433-466

[14] B. Haq; J. Hardenbol; P.R. Vail Chronology of fluctuating sea levels since the Triassic, Science, Volume 235 (1987), pp. 1156-1167

[15] J. Hardenbol, J. Thierry, M.B. Farley, T. Jacquin, P.C. De Graciansky, P.R. Vail, Cretaceous sequence chronostratigraphy, in: P.C. De Graciansky, J. Hardenbol, T. Jacquin, P.R. Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European Basins. Soc. Econ. Paleontol. Mineral. Spec. Publ. Tulsa, 1998, 60. Chart 4.

[16] M. Herkat; J. Delfaud Genèse des séquences du Crétacé supérieur des Aurès (Algérie). Rôle de l’eustatisme, de la tectonique, de la subsidence : une mise au point, C. R. Acad. Sci. Paris, Ser. IIa, Volume 330 (2000), pp. 785-792

[17] M.A.W. Heyman, Tectonic and depositional history of the Moroccan continental margin, in: A.J. Tankard, H.R. Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic Margins. AAPG Memoir 46 (1990) 323–340.

[18] H. Ibouh; F. Zargouni Nouvelles données sur la tectonique synsedimentaire du Crétacé inférieur et le début du Crétacé supérieur au niveau de la jonction des Jebels Orbata et Bouhedma (Tunisie méridionale), Afr. Geosci. Rev., Volume 5 (1998), pp. 207-215

[19] D. Jongsma; J.E. van Hinte; J.M. Woodside Geologic structure and neotectonics of the North-African continental margin south of Sicily, Mar. Pet. Geol., Volume 2 (1985), pp. 156-179

[20] N. Kazi-Tani, Évolution géodynamique de la bordure nord africaine : le domaine intraplaque nord-algérien, approche séquentielle, thèse Sd, université de Pau, 2 (1986) 871 p.

[21] S. Khomsi; M. Bédir; M.G. Ben Jemia Mise en évidence et analyse d’une structure atlasique ennoyée au front de la Chaîne alpine tunisienne, C. R. Geoscience, Volume 336 (2004), pp. 1293-1300

[22] S. Khomsi; M. Bédir; M.G. Ben Jemia Mise en évidence d’un nouveau front de chevauchement dans l’Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère, C. R. Geoscience, Volume 336 (2004), pp. 1401-1408

[23] E. Laville, Évolution sédimentaire, tectonique et magmatique du bassin jurassique du Haut Atlas (Maroc) : modèle en relais multiples de décrochement, thèse Sci., université de Montpellier, (1985) 166 p.

[24] S. Luning; S. Kolonic; E.M. Belhaj; Z. Belhaj; L. Cota; G. Baric et al. An integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa, Earth Science Reviews, Volume 64 (2004) no. Issues 1-2, pp. 51-117

[25] A.L. Maâmouri, D. Zaghbib-Turki, M.F. Matmati, M. Chikhaoui, J. Salaj, La Formation Bahloul en Tunisie centro, septrentionale : variations latérales, nouvelle datation et nouvelle interprétation en termes de stratigraphie séquentielle, J. Afr. Earth Sci. 18 (1) (1994) 37–50.

[26] J.-C. Maurin; R. Guiraud Basement control in the development of the Early Cretaceous west and central African Rift System, Tectonophysics, Volume 228 (1993), pp. 81-95

[27] M.A. Morgan, J. Grocott, R.T.J. Moody, The structural evolution of the Zaghouan-Ressas Structural Belt, northern Tunisia, in D.S Macgregor, R.T.J. Moody, D.D. Clark-Lowes (Eds.), Petroleum geology of North Africa: Geological Society, Special Publication, London, 1998, vol. 132, pp. 405–422.

[28] J.J. Orgeval, Peridiapiric metal concentration: example of the Bou Grine deposit (Tunisian Atlas), in: Fontboté/Boni (Eds.), Sediment-Hosted Zn–Pb Ores. Spec. Publ. 10, Soc. Geol. Applied to Mineral Deposits, Springer, Berlin, 1994, pp. 354–389.

[29] R. Oyarzun; M. Doblas; J. Lopez-Ruiz; J.M. Cebria Opening of the central Atlantic and asymmetric mantle upwelling phenomena: implications for long-lived magmatism in western North Africa and Europe, Geology, Volume 25 (1997), pp. 727-730

[30] M. Patriat; N. Ellouz; Z. Dey; J.M. Gaulier; H. Ben Kilani The Hammamet, Gabes and Chotts basins (Tunisia): a review of the subsidence history, Sedimentary Geology, Volume 156 (2003), pp. 241-262

[31] V. Perthuisot Diapirism in northern Tunisia, J. Struct. Geol., Volume 3 (1981), pp. 231-235

[32] F. Robaszynski; M. Caron; C. Dupuis; F. Amedro; J.M. Gonzalez-Donso; D. Linares et al. A tentative integrated stratigraphy in the Turonian of central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area, Bull. Centres Rech. Explor. Prod. Elf- Aquitaine, Volume 14 (1990) no. 1, pp. 213-384

[33] M. Saidi, H. Inoubli, Geochemistry and organic petrography of proven Tunisian source rocks, 20th International meeting of organic geochemistry, Nancy, 2001.

[34] J. Salaj The geology of the Pelagian block; The eastern Tunisian platform (A.E.M. Nairn; W.H. Kanes; F.G. Stehli, eds.), The ocean basins and margins; The western Mediterranean, Plenum Press, New York, 1978, pp. 361-416

[35] M. Soua, Application of the Time series analysis to the Latest Cenomanian-Early Turonian sequence in the southern Tethyan margin, 13th Conference of the Geological Society of Africa 22 (2008) 218–232.

[36] M. Soua; N. Tribovillard Depositional model at the C/T boundary for the Bahloul Formation, Tunisia, C. R. Geoscience, Volume 339 (2007) no. 10, pp. 692-701

[37] M. Soussi, Le Jurassique de la Tunisie atlasique. Stratigraphie, dynamique sédimentaire, paléogéographie et intérêt pétrolier. Thèse de Doctorat d’État es Sci. Naturelle (Géologie), Université de Tunis (2000). Édition Université de Lyon, Docum. Lab. Géol. Lyon, 15 (2002), 1–363.

[38] C. Soyer; P. Tricart Tectonique d’inversion en Tunisie centrale : le chaînon atlasique Segdale-Boudinar, Bull. Soc. Geol. France, Volume 5 (1989), pp. 829-836

[39] M.M. Turki, Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Thèse de Doctorat d’État es Sci. Naturelle (Géologie), Université de Tunis, (1985). Édition INRST Centre de la Terre (1988), 7, 1–252.


Commentaires - Politique


Ces articles pourraient vous intéresser

Structural evolution of the Téfidet trough (East Aïr, Niger) in relation with the West African Cretaceous and Paleogene rifting and compression episodes

Moussa Konaté; Yacouba Ahmed; Moussa Harouna

C. R. Géos (2019)


Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

Fetheddine Melki; Taher Zouaghi; Mohamed Ben Chelbi; ...

C. R. Géos (2010)


Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin

Géraldine Rougier; Mary Ford; Frédéric Christophoul; ...

C. R. Géos (2016)