Comptes Rendus
Partial Differential Equations
A chemotaxis model motivated by angiogenesis
[Un modèle de chimiotactisme motivé par l'angiogénèse]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 141-146.

We consider a simple model arising in modeling angiogenesis and more specifically the development of capillary blood vessels due to an exogenous chemo-attractive signal (solid tumors for instance). It is given as coupled system of parabolic equations through a nonlinear transport term. We show that, by opposition to some classical chemotaxis model, this system admits a positive energy. This allows us to develop an existence theory for weak solutions. We also show that, in two dimensions, this system admits a family of self-similar waves.

Nous considérons un modèle simplifié intervenant dans la modélisation de l'angiogénèse et plus précisément le développement de vaisseaux sanguins capillaires sous l'effet d'un signal chemo-attractif exogène (tumeurs solides par exemple). Il s'agit d'un système parabolique couplé par un terme de transport non linéaire. Nous montrons que, contrairement au cas d'autres modèles de chimiotactisme, ce système admet une énergie positive. Ceci nous permet de développer une théorie d'existence de solutions faibles. Nous montrons aussi que, en deux dimensions, ce système admet une famille de solutions autosimilaires.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00008-0

L. Corrias 1 ; B. Perthame 2 ; H. Zaag 2

1 Département de mathématiques, Université d'Evry Val d'Essonne, rue du Père Jarlan, 91025 Evry cedex, France
2 Département de mathématiques et applications, École normale supérieure, et INRIA, projet BANG, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2003__336_2_141_0,
     author = {L. Corrias and B. Perthame and H. Zaag},
     title = {A chemotaxis model motivated by angiogenesis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {141--146},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00008-0},
     language = {en},
}
TY  - JOUR
AU  - L. Corrias
AU  - B. Perthame
AU  - H. Zaag
TI  - A chemotaxis model motivated by angiogenesis
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 141
EP  - 146
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00008-0
LA  - en
ID  - CRMATH_2003__336_2_141_0
ER  - 
%0 Journal Article
%A L. Corrias
%A B. Perthame
%A H. Zaag
%T A chemotaxis model motivated by angiogenesis
%J Comptes Rendus. Mathématique
%D 2003
%P 141-146
%V 336
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)00008-0
%G en
%F CRMATH_2003__336_2_141_0
L. Corrias; B. Perthame; H. Zaag. A chemotaxis model motivated by angiogenesis. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 141-146. doi : 10.1016/S1631-073X(02)00008-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00008-0/

[1] A.R.A. Anderson; M.A.J. Chaplain A mathematical model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett., Volume 11 (1998) no. 3, pp. 109-114

[2] N. Bellomo; L. Preziosi Modeling and mathematical problems related to tumors immune system interactions, Math. Comput. Modelling, Volume 31 (2000), pp. 413-452

[3] M.D. Betterton; M.P. Brenner Collapsing bacterial cylinders, Phys. Rev. E, Volume 64 (2001) no. 061904

[4] M.P. Brenner; P. Constantin; L.P. Kadanoff; A. Schenkel; S.C. Venkataramani Diffusion, attraction and collapse, Nonlinearity, Volume 12 (1999) no. 4, pp. 1071-1098

[5] M.P. Brenner; L.S. Levitov; E.O. Budrene Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., Volume 74 (1998), pp. 1677-1693

[6] M.A.J. Chaplain Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development, Math. Comput. Modelling, Volume 23 (1996), pp. 47-87

[7] M.A.J. Chaplain, L. Preziosi, Macroscopic modelling of the growth and developement of tumor masses. Preprint no. 27, Politecnico di Torino, 2000

[8] F.A. Davidson; A.R.A. Anderson; M.A.J. Chaplain Steady-state solutions of a generic model for the formation of capillary networks, Appl. Math. Lett., Volume 13 (2000) no. 5, pp. 127-132

[9] E. De Angelis, P.-E. Jabin, Analysis of a mean field modelling of tumor and immune system competition, Preprint ENS-DMA 02-19, to appear in Math. Models Methods Appl. Sci

[10] D. Horstmann Lyapunov functions and Lp estimates for a class of reaction–diffusion systems, Colloq. Math., Volume 87 (2001) no. 1, pp. 113-127

[11] W. Jäger; S. Luckhaus On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 239 (1992) no. 2, pp. 819-824

[12] A. Marrocco, 2D simulation of chemotactic bacteria agreggation, Preprint, 2002

[13] M.A. Herrero; E. Medina; J.J.L. Velázquez Finite-time aggregation into a single point in a reaction–diffusion system, Nonlinearity, Volume 10 (1997) no. 6, pp. 1739-1754

[14] H.A. Levine; B.D. Sleeman A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., Volume 57 (1997), pp. 683-730

[15] H.A. Levine; M. Nilsen-Hamilton; B.D. Sleeman Mathematical modelling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., Volume 42 (2001), pp. 195-238

[16] M. Rascle On a system of non-linear strongly coupled partial differential equation arising in biology (Everitt; Sleeman, eds.), Conf. on Ordinary and Partial Differential Equation, Lectures Notes in Math., 846, Springer-Verlag, New York, 1980, pp. 290-298

[17] M. Rascle; C. Ziti Finite time blow-up in some models of chemotaxis, J. Math. Biol., Volume 33 (1995), pp. 388-414

[18] B.D. Sleeman; A.R.A. Anderson; M.A.J. Chaplain A mathematical analysis of a model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett., Volume 12 (1999) no. 8, pp. 121-127

  • Chun Wu Qualitative behavior of solutions for a chemotaxis-haptotaxis model with flux limitation, Evolution Equations and Control Theory, Volume 14 (2025) no. 2, pp. 275-288 | DOI:10.3934/eect.2024054 | Zbl:7985312
  • Yi Lu; Chunhua Jin; Langhao Zhou Global well-posedness in a three-dimensional chemotaxis-consumption model with singular sensitivity, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 1, p. 21 (Id/No e202400545) | DOI:10.1002/zamm.202400545 | Zbl:7987887
  • Chunhua Jin Critical exponent to a cancer invasion model with nonlinear diffusion, Journal of Mathematical Physics, Volume 65 (2024) no. 10, p. 18 (Id/No 101502) | DOI:10.1063/5.0143786 | Zbl:1551.92015
  • Mario Fuest; Shahin Heydari A cross-diffusion system modeling rivaling gangs: global existence of bounded solutions and FCT stabilization for numerical simulation, M3AS. Mathematical Models Methods in Applied Sciences, Volume 34 (2024) no. 9, pp. 1739-1779 | DOI:10.1142/s0218202524500349 | Zbl:1548.35022
  • José A. Carrillo; Guangyi Hong; Zhi-an Wang Convergence of boundary layers of chemotaxis models with physical boundary conditions. I: Degenerate initial data, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 6, pp. 7576-7643 | DOI:10.1137/24m1628426 | Zbl:7957209
  • Alexander Kiselev; Fedor Nazarov; Lenya Ryzhik; Yao Yao Chemotaxis and reactions in biology, Journal of the European Mathematical Society (JEMS), Volume 25 (2023) no. 7, pp. 2641-2696 | DOI:10.4171/jems/1247 | Zbl:1519.92032
  • Jaewook Ahn; Myeonghyeon Kim Temporal decay of solutions for a chemotaxis model of angiogenesis type, Journal of the Korean Mathematical Society, Volume 60 (2023) no. 3, pp. 619-634 | DOI:10.4134/jkms.j220424 | Zbl:1516.35422
  • Yi-ren Chen; Feifei Zou Nonlinear stability of strong traveling waves for a chemotaxis model with logarithmic sensitivity and periodic perturbations, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 14, pp. 15123-15146 | DOI:10.1002/mma.9365 | Zbl:1543.35034
  • Rafael Granero-Belinchón A nonlocal model describing tumor angiogenesis, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 227 (2023), p. 15 (Id/No 113180) | DOI:10.1016/j.na.2022.113180 | Zbl:1503.35237
  • Siying Li; Jinhuan Wang Optimal mass on the parabolic-elliptic-ODE minimal chemotaxis-haptotaxis in R2, Physica Scripta, Volume 98 (2023) no. 9, p. 095223 | DOI:10.1088/1402-4896/aceba0
  • 华 钟 Global Existence of a Two-Dimension Chemotaxis System with Discontinuous Data, Pure Mathematics, Volume 13 (2023) no. 04, p. 1018 | DOI:10.12677/pm.2023.134107
  • Sweta Sinha; Paramjeet Singh Mathematical modeling and simulation of mechano-chemical effect on two-phase avascular tumor, International Journal of Modern Physics C, Volume 33 (2022) no. 05 | DOI:10.1142/s0129183122500632
  • Qianqian Hou Global well-posedness and boundary layer effects of radially symmetric solutions for the singular Keller-Segel model, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3, p. 24 (Id/No 58) | DOI:10.1007/s00021-022-00692-5 | Zbl:1490.35026
  • Fuyi Xu; Ai Huang; Peng Fu The global solvability of the Cauchy problem for a multi-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Journal of Mathematical Physics, Volume 63 (2022) no. 3, p. 31 (Id/No 031507) | DOI:10.1063/5.0078000 | Zbl:1507.35303
  • Tong Li; Zhi-An Wang Traveling wave solutions of a singular Keller-Segel system with logistic source, Mathematical Biosciences and Engineering, Volume 19 (2022) no. 8, pp. 8107-8131 | DOI:10.3934/mbe.2022379 | Zbl:1510.92037
  • Hongyun Peng; Zhi-An Wang; Changjiang Zhu Global weak solutions and asymptotics of a singular PDE-ODE chemotaxis system with discontinuous data, Science China. Mathematics, Volume 65 (2022) no. 2, pp. 269-290 | DOI:10.1007/s11425-019-1754-0 | Zbl:1484.35062
  • Youshan Tao; Michael Winkler Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 1, pp. 439-454 | DOI:10.3934/dcds.2020216 | Zbl:1458.35076
  • Youshan Tao; Michael Winkler A critical virus production rate for efficiency of oncolytic virotherapy, European Journal of Applied Mathematics, Volume 32 (2021) no. 2, pp. 301-316 | DOI:10.1017/s0956792520000133 | Zbl:1526.92012
  • Zengji Du; Jiang Liu; Yulin Ren Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach, Journal of Differential Equations, Volume 270 (2021), pp. 1019-1042 | DOI:10.1016/j.jde.2020.09.009 | Zbl:1452.35219
  • Peter Y. H. Pang; Yifu Wang; Jingxue Yin Asymptotic profile of a two-dimensional chemotaxis-Navier-Stokes system with singular sensitivity and logistic source, M3AS. Mathematical Models Methods in Applied Sciences, Volume 31 (2021) no. 3, pp. 577-618 | DOI:10.1142/s0218202521500135 | Zbl:1490.35045
  • Hua Chen; Jian-Meng Li; Kelei Wang On the vanishing viscosity limit of a chemotaxis model, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 3, pp. 1963-1987 | DOI:10.3934/dcds.2020101 | Zbl:1431.35062
  • Jan Burczak; Rafael Granero-Belinchón Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations, Discrete and Continuous Dynamical Systems. Series S, Volume 13 (2020) no. 2, pp. 139-164 | DOI:10.3934/dcdss.2020008 | Zbl:1439.35054
  • Kyudong Choi; Moon-Jin Kang; Alexis F. Vasseur Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 142 (2020), pp. 266-297 | DOI:10.1016/j.matpur.2020.03.002 | Zbl:1448.92036
  • Jingyu Li; Zhian Wang Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, Journal of Differential Equations, Volume 268 (2020) no. 11, pp. 6940-6970 | DOI:10.1016/j.jde.2019.11.076 | Zbl:1509.35094
  • Myeongju Chae; Kyudong Choi Nonlinear stability of planar traveling waves in a chemotaxis model of tumor angiogenesis with chemical diffusion, Journal of Differential Equations, Volume 268 (2020) no. 7, pp. 3449-3496 | DOI:10.1016/j.jde.2019.09.061 | Zbl:1432.92013
  • Chi Xu; Yifu Wang Asymptotic Behavior of a Tumor Angiogenesis Model with Haptotaxis, Mathematics, Volume 8 (2020) no. 5, p. 664 | DOI:10.3390/math8050664
  • Yao Nie; Jia Yuan Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 196 (2020), p. 17 (Id/No 111782) | DOI:10.1016/j.na.2020.111782 | Zbl:1442.35006
  • Jiashan Zheng Mathematical research for models which is related to chemotaxis system, Current trends in mathematical analysis and its interdisciplinary applications, Cham: Birkhäuser, 2019, pp. 351-444 | DOI:10.1007/978-3-030-15242-0_12 | Zbl:1442.35487
  • Chao Deng; Tong Li Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces, Discrete and Continuous Dynamical Systems. Series B, Volume 24 (2019) no. 1, pp. 183-195 | DOI:10.3934/dcdsb.2018093 | Zbl:1429.35030
  • Qianqian Hou; Zhian Wang Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 130 (2019), pp. 251-287 | DOI:10.1016/j.matpur.2019.01.008 | Zbl:1428.35022
  • Jiashan Zheng; Yuanyuan Ke Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in N dimensions, Journal of Differential Equations, Volume 266 (2019) no. 4, pp. 1969-2018 | DOI:10.1016/j.jde.2018.08.018 | Zbl:1416.92031
  • Zhong Tan; Jianfeng Zhou Global existence and time decay estimate of solutions to the Keller-Segel system, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 1, pp. 375-402 | DOI:10.1002/mma.5352 | Zbl:1407.35107
  • Jana Alkhayal; Samar Issa; Mustapha Jazar; Régis Monneau Existence result for degenerate cross-diffusion system with application to seawater intrusion, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 24 (2018) no. 4, pp. 1735-1758 | DOI:10.1051/cocv/2017058 | Zbl:1410.35106
  • Michael Winkler Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 112 (2018), pp. 118-169 | DOI:10.1016/j.matpur.2017.11.002 | Zbl:1391.35065
  • Myeongju Chae; Kyudong Choi; Kyungkeun Kang; Jihoon Lee Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain, Journal of Differential Equations, Volume 265 (2018) no. 1, pp. 237-279 | DOI:10.1016/j.jde.2018.02.034 | Zbl:1392.92037
  • Hongyun Peng; Zhi-An Wang Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, Journal of Differential Equations, Volume 265 (2018) no. 6, pp. 2577-2613 | DOI:10.1016/j.jde.2018.04.041 | Zbl:1397.35318
  • Yinghui Zhang; Cong Li; Weijun Xie Decay of a 3-D hyperbolic-parabolic system modeling chemotaxis, Journal of Information and Optimization Sciences, Volume 39 (2018) no. 7, p. 1505 | DOI:10.1080/02522667.2017.1386902
  • Hongyun Peng; Zhi-An Wang; Kun Zhao; Changjiang Zhu Boundary layers and stabilization of the singular Keller-Segel system, Kinetic and Related Models, Volume 11 (2018) no. 5, pp. 1085-1123 | DOI:10.3934/krm.2018042 | Zbl:1405.92033
  • Xiangdong Zhao; Sining Zheng Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 7, pp. 2615-2624 | DOI:10.1002/mma.4762 | Zbl:1390.92027
  • Yuanyuan Ke; Jiashan Zheng A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, Volume 31 (2018) no. 10, pp. 4602-4620 | DOI:10.1088/1361-6544/aad307 | Zbl:1396.92009
  • Qianqian Hou; Cheng-Jie Liu; Ya-Guang Wang; Zhian Wang Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one-dimensional case, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, pp. 3058-3091 | DOI:10.1137/17m112748x | Zbl:1394.35025
  • Elvira Barbera; Giovanna Valenti Wave features of a hyperbolic reaction-diffusion model for chemotaxis, Wave Motion, Volume 78 (2018), pp. 116-131 | DOI:10.1016/j.wavemoti.2018.02.004 | Zbl:1469.35140
  • Lan Luo Large time behavior for a multidimensional chemotaxis model, Boundary Value Problems, Volume 2017 (2017), p. 11 (Id/No 40) | DOI:10.1186/s13661-017-0772-2 | Zbl:1360.35046
  • Jiashan Zheng Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete and Continuous Dynamical Systems, Volume 37 (2017) no. 1, pp. 627-643 | DOI:10.3934/dcds.2017026 | Zbl:1353.92026
  • Yohei Tsutsui Bounded global solutions to a Keller-Segel system with nondiffusive chemical in Rn, Journal of Evolution Equations, Volume 17 (2017) no. 2, pp. 627-640 | DOI:10.1007/s00028-016-0330-x | Zbl:1377.92013
  • Dirk Horstmann Do some chemotaxis-growth models possess Lyapunov functionals?, Applied Mathematics Letters, Volume 53 (2016), pp. 107-111 | DOI:10.1016/j.aml.2015.10.007 | Zbl:1353.35065
  • Yannick Deleuze; Chen-Yu Chiang; Marc Thiriet; Tony W. H. Sheu Numerical study of plume patterns in a chemotaxis-diffusion-convection coupling system, Computers and Fluids, Volume 126 (2016), pp. 58-70 | DOI:10.1016/j.compfluid.2015.10.018 | Zbl:1390.76305
  • Jiashan Zheng; Yifu Wang Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model, Computers Mathematics with Applications, Volume 71 (2016) no. 9, pp. 1898-1909 | DOI:10.1016/j.camwa.2016.03.014 | Zbl:1443.92063
  • Nisrine Outada; Nicolas Vauchelet; Thami Akrid; Mohamed Khaladi From kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing, M3AS. Mathematical Models Methods in Applied Sciences, Volume 26 (2016) no. 14, pp. 2709-2734 | DOI:10.1142/s0218202516500640 | Zbl:1356.35130
  • Yinghui Zhang; Weijun Xie Global existence and exponential stability for the strong solutions in H2 to the 3-D chemotaxis model, Boundary Value Problems, Volume 2015 (2015), p. 13 (Id/No 116) | DOI:10.1186/s13661-015-0375-8 | Zbl:1381.35196
  • Shangbin Ai; Wenzhang Huang; Zhi-An Wang Reaction, diffusion and chemotaxis in wave propagation, Discrete and Continuous Dynamical Systems. Series B, Volume 20 (2015) no. 1, pp. 1-21 | DOI:10.3934/dcdsb.2015.20.1 | Zbl:1304.35179
  • Changwook Yoon; Yong-Jung Kim Bacterial chemotaxis without gradient-sensing, Journal of Mathematical Biology, Volume 70 (2015) no. 6, pp. 1359-1380 | DOI:10.1007/s00285-014-0790-y | Zbl:1339.92012
  • N. Bellomo; A. Bellouquid; Y. Tao; M. Winkler Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, M3AS. Mathematical Models Methods in Applied Sciences, Volume 25 (2015) no. 9, pp. 1663-1763 | DOI:10.1142/s021820251550044x | Zbl:1326.35397
  • Shangbing Ai; Zhian Wang Traveling bands for the Keller-Segel model with population growth, Mathematical Biosciences and Engineering, Volume 12 (2015) no. 4, pp. 717-737 | DOI:10.3934/mbe.2015.12.717 | Zbl:1330.35461
  • Myeongju Chae; Kyungkeun Kang; Jihoon Lee Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Communications in Partial Differential Equations, Volume 39 (2014) no. 7, pp. 1205-1235 | DOI:10.1080/03605302.2013.852224 | Zbl:1304.35481
  • Youshan Tao; Michael Winkler Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Journal of Differential Equations, Volume 257 (2014) no. 3, pp. 784-815 | DOI:10.1016/j.jde.2014.04.014 | Zbl:1295.35144
  • Chao Deng; Tong Li Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, Journal of Differential Equations, Volume 257 (2014) no. 5, pp. 1311-1332 | DOI:10.1016/j.jde.2014.05.014 | Zbl:1293.35342
  • Y. Sugiyama; Y. Tsutsui; J. J. L. Velázquez Global solutions to a chemotaxis system with non-diffusive memory, Journal of Mathematical Analysis and Applications, Volume 410 (2014) no. 2, pp. 908-917 | DOI:10.1016/j.jmaa.2013.08.065 | Zbl:1333.92014
  • Jingyu Li; Tong Li; Zhi-An Wang Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, M3AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 14, p. 2819 | DOI:10.1142/s0218202514500389 | Zbl:1311.35021
  • Myeongju Chae; Kyungkeun Kang; Jihoon Lee Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 6, p. 2271 | DOI:10.3934/dcds.2013.33.2271
  • Zhi-An Wang Mathematics of traveling waves in chemotaxis –Review paper–, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 3, p. 601 | DOI:10.3934/dcdsb.2013.18.601
  • Yinghui Zhang; Haiying Deng; Mingbao Sun Global analysis of smooth solutions to a hyperbolic-parabolic coupled system, Frontiers of Mathematics in China, Volume 8 (2013) no. 6, pp. 1437-1460 | DOI:10.1007/s11464-013-0331-9 | Zbl:1311.35159
  • Weijun Xie; Yinghui Zhang; Yuandong Xiao; Wei Wei Global Existence and Convergence Rates for the Strong Solutions inH2to the 3D Chemotaxis Model, Journal of Applied Mathematics, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/391056
  • Yinghui Zhang; Zhong Tan; Ming-Bao Sun Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 1, p. 465 | DOI:10.1016/j.nonrwa.2012.07.009
  • Zhi-An Wang Wavefront of an angiogenesis model, Discrete and Continuous Dynamical Systems - Series B, Volume 17 (2012) no. 8, p. 2849 | DOI:10.3934/dcdsb.2012.17.2849
  • Jishan Fan; Kun Zhao Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 2, pp. 687-695 | DOI:10.1016/j.jmaa.2012.05.036 | Zbl:1252.35088
  • Tong Li; Zhi-An Wang Steadily propagating waves of a chemotaxis model, Mathematical Biosciences, Volume 240 (2012) no. 2, pp. 161-168 | DOI:10.1016/j.mbs.2012.07.003 | Zbl:1316.92013
  • Tong Li; Ronghua Pan; Kun Zhao Global Dynamics of a Hyperbolic-Parabolic Model Arising from Chemotaxis, SIAM Journal on Applied Mathematics, Volume 72 (2012) no. 1, p. 417 | DOI:10.1137/110829453
  • Chengchun Hao Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 5, pp. 825-834 | DOI:10.1007/s00033-012-0193-0 | Zbl:1258.35195
  • Dong Li; Tong Li; Kun Zhao On a hyperbolic-parabolic system modeling chemotaxis, M3AS. Mathematical Models Methods in Applied Sciences, Volume 21 (2011) no. 8, pp. 1631-1650 | DOI:10.1142/s0218202511005519 | Zbl:1230.35070
  • Renjun Duan; Alexander Lorz; Peter Markowich Global Solutions to the Coupled Chemotaxis-Fluid Equations, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1635 | DOI:10.1080/03605302.2010.497199
  • Tong Li; Zhi-An Wang Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic – parabolic system arising in chemotaxis, M3AS. Mathematical Models Methods in Applied Sciences, Volume 20 (2010) no. 11, pp. 1967-1998 | DOI:10.1142/s0218202510004830 | Zbl:1213.35081
  • Akio Ito; Maria Gokieli; Marek Niezgódka; Zuzanna Szymańska Local existence and uniqueness of solutions to approximate systems of 1D tumor invasion model, Nonlinear Analysis. Real World Applications, Volume 11 (2010) no. 5, pp. 3555-3566 | DOI:10.1016/j.nonrwa.2010.01.003 | Zbl:1204.35009
  • Gabriela Liţcanu; Cristian Morales-Rodrigo Global solutions and asymptotic behavior for a parabolic degenerate coupled system arising from biology, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 72 (2010) no. 1, pp. 77-98 | DOI:10.1016/j.na.2009.06.083 | Zbl:1230.35048
  • Adrien Blanchet; José A. Carrillo; Nader Masmoudi Infinite time aggregation for the critical Patlak-Keller-Segel model in R2, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 10, pp. 1449-1481 | DOI:10.1002/cpa.20225 | Zbl:1155.35100
  • Adrien Blanchet; José A. Carrillo; Nader Masmoudi Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2, Communications on Pure and Applied Mathematics (2007) | DOI:10.1002/cpa.20229
  • Christoph Walker; Glenn F. Webb Global Existence of Classical Solutions for a Haptotaxis Model, SIAM Journal on Mathematical Analysis, Volume 38 (2007) no. 5, p. 1694 | DOI:10.1137/060655122
  • V. Calvez; B. Perthame A Lyapunov function for a two-chemical species version of the chemotaxis model, BIT, Volume 46 (2006), p. s85-s97 | DOI:10.1007/s10543-006-0086-8 | Zbl:1103.35034
  • F. R. Guarguaglini; R. Natalini Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis. Real World Applications, Volume 6 (2005) no. 3, pp. 477-494 | DOI:10.1016/j.nonrwa.2004.09.007 | Zbl:1078.80007
  • Benoît Perthame PDE models for chemotactic movements: parabolic, hyperbolic and kinetic., Applications of Mathematics, Volume 49 (2004) no. 6, pp. 539-564 | DOI:10.1007/s10492-004-6431-9 | Zbl:1099.35157
  • Jean Dolbeault; Benoît Perthame Optimal critical mass in the two dimensional Keller-Segel model in R2, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 9, pp. 611-616 | DOI:10.1016/j.crma.2004.08.011 | Zbl:1056.35076
  • J. Ignacio Tello Mathematical analysis and stability of a chemotaxis model with logistic term, Mathematical Methods in the Applied Sciences, Volume 27 (2004) no. 16, p. 1865 | DOI:10.1002/mma.528
  • Li Chen; Ansgar Jüngel Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion, SIAM Journal on Mathematical Analysis, Volume 36 (2004) no. 1, p. 301 | DOI:10.1137/s0036141003427798
  • Americo Marrocco Numerical simulation of chemotactic bacteria aggregation via mixed finite elements., M2AN. Mathematical Modelling and Numerical Analysis. ESAIM, European Series in Applied and Industrial Mathematics, Volume 37 (2003) no. 4, pp. 617-630 | DOI:10.1051/m2an:2003048 | Zbl:1065.92006

Cité par 84 documents. Sources : Crossref, zbMATH

Commentaires - Politique