[Un modèle de chimiotactisme motivé par l'angiogénèse]
We consider a simple model arising in modeling angiogenesis and more specifically the development of capillary blood vessels due to an exogenous chemo-attractive signal (solid tumors for instance). It is given as coupled system of parabolic equations through a nonlinear transport term. We show that, by opposition to some classical chemotaxis model, this system admits a positive energy. This allows us to develop an existence theory for weak solutions. We also show that, in two dimensions, this system admits a family of self-similar waves.
Nous considérons un modèle simplifié intervenant dans la modélisation de l'angiogénèse et plus précisément le développement de vaisseaux sanguins capillaires sous l'effet d'un signal chemo-attractif exogène (tumeurs solides par exemple). Il s'agit d'un système parabolique couplé par un terme de transport non linéaire. Nous montrons que, contrairement au cas d'autres modèles de chimiotactisme, ce système admet une énergie positive. Ceci nous permet de développer une théorie d'existence de solutions faibles. Nous montrons aussi que, en deux dimensions, ce système admet une famille de solutions autosimilaires.
Accepté le :
Publié le :
L. Corrias 1 ; B. Perthame 2 ; H. Zaag 2
@article{CRMATH_2003__336_2_141_0, author = {L. Corrias and B. Perthame and H. Zaag}, title = {A chemotaxis model motivated by angiogenesis}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--146}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00008-0}, language = {en}, }
L. Corrias; B. Perthame; H. Zaag. A chemotaxis model motivated by angiogenesis. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 141-146. doi : 10.1016/S1631-073X(02)00008-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00008-0/
[1] A mathematical model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett., Volume 11 (1998) no. 3, pp. 109-114
[2] Modeling and mathematical problems related to tumors immune system interactions, Math. Comput. Modelling, Volume 31 (2000), pp. 413-452
[3] Collapsing bacterial cylinders, Phys. Rev. E, Volume 64 (2001) no. 061904
[4] Diffusion, attraction and collapse, Nonlinearity, Volume 12 (1999) no. 4, pp. 1071-1098
[5] Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., Volume 74 (1998), pp. 1677-1693
[6] Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development, Math. Comput. Modelling, Volume 23 (1996), pp. 47-87
[7] M.A.J. Chaplain, L. Preziosi, Macroscopic modelling of the growth and developement of tumor masses. Preprint no. 27, Politecnico di Torino, 2000
[8] Steady-state solutions of a generic model for the formation of capillary networks, Appl. Math. Lett., Volume 13 (2000) no. 5, pp. 127-132
[9] E. De Angelis, P.-E. Jabin, Analysis of a mean field modelling of tumor and immune system competition, Preprint ENS-DMA 02-19, to appear in Math. Models Methods Appl. Sci
[10] Lyapunov functions and Lp estimates for a class of reaction–diffusion systems, Colloq. Math., Volume 87 (2001) no. 1, pp. 113-127
[11] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 239 (1992) no. 2, pp. 819-824
[12] A. Marrocco, 2D simulation of chemotactic bacteria agreggation, Preprint, 2002
[13] Finite-time aggregation into a single point in a reaction–diffusion system, Nonlinearity, Volume 10 (1997) no. 6, pp. 1739-1754
[14] A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., Volume 57 (1997), pp. 683-730
[15] Mathematical modelling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., Volume 42 (2001), pp. 195-238
[16] On a system of non-linear strongly coupled partial differential equation arising in biology (Everitt; Sleeman, eds.), Conf. on Ordinary and Partial Differential Equation, Lectures Notes in Math., 846, Springer-Verlag, New York, 1980, pp. 290-298
[17] Finite time blow-up in some models of chemotaxis, J. Math. Biol., Volume 33 (1995), pp. 388-414
[18] A mathematical analysis of a model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett., Volume 12 (1999) no. 8, pp. 121-127
- A Computational Study on a Parabolic-Hyperbolic Chemotaxis System for Modeling Angiogenesis by a Stochastic Interacting Particle Field Method, Advances in Data Science and Optimization of Complex Systems, Volume 1311 (2025), p. 64 | DOI:10.1007/978-3-031-90606-0_6
- Global well‐posedness in a three‐dimensional chemotaxis‐consumption model with singular sensitivity, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 1 | DOI:10.1002/zamm.202400545
- Critical exponent to a cancer invasion model with nonlinear diffusion, Journal of Mathematical Physics, Volume 65 (2024) no. 10 | DOI:10.1063/5.0143786
- A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 09, p. 1739 | DOI:10.1142/s0218202524500349
- Convergence of Boundary Layers of Chemotaxis Models with Physical Boundary Conditions I: Degenerate Initial Data, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 6, p. 7576 | DOI:10.1137/24m1628426
- Nonlinear stability of strong traveling waves for a chemotaxis model with logarithmic sensitivity and periodic perturbations, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 14, p. 15123 | DOI:10.1002/mma.9365
- A nonlocal model describing tumor angiogenesis, Nonlinear Analysis, Volume 227 (2023), p. 113180 | DOI:10.1016/j.na.2022.113180
- Optimal mass on the parabolic-elliptic-ODE minimal chemotaxis-haptotaxis in R2, Physica Scripta, Volume 98 (2023) no. 9, p. 095223 | DOI:10.1088/1402-4896/aceba0
- Global Existence of a Two-Dimension Chemotaxis System with Discontinuous Data, Pure Mathematics, Volume 13 (2023) no. 04, p. 1018 | DOI:10.12677/pm.2023.134107
- Mathematical modeling and simulation of mechano-chemical effect on two-phase avascular tumor, International Journal of Modern Physics C, Volume 33 (2022) no. 05 | DOI:10.1142/s0129183122500632
- Global Well-Posedness and Boundary Layer Effects of Radially Symmetric Solutions for the Singular Keller–Segel Model, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3 | DOI:10.1007/s00021-022-00692-5
- The global solvability of the Cauchy problem for a multi-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization, Journal of Mathematical Physics, Volume 63 (2022) no. 3 | DOI:10.1063/5.0078000
- Traveling wave solutions of a singular Keller-Segel system with logistic source, Mathematical Biosciences and Engineering, Volume 19 (2022) no. 8, p. 8107 | DOI:10.3934/mbe.2022379
- Global weak solutions and asymptotics of a singular PDE-ODE Chemotaxis system with discontinuous data, Science China Mathematics, Volume 65 (2022) no. 2, p. 269 | DOI:10.1007/s11425-019-1754-0
- A critical virus production rate for efficiency of oncolytic virotherapy, European Journal of Applied Mathematics, Volume 32 (2021) no. 2, p. 301 | DOI:10.1017/s0956792520000133
- Asymptotic profile of a two-dimensional Chemotaxis–Navier–Stokes system with singular sensitivity and logistic source, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 03, p. 577 | DOI:10.1142/s0218202521500135
- Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Journal de Mathématiques Pures et Appliquées, Volume 142 (2020), p. 266 | DOI:10.1016/j.matpur.2020.03.002
- Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, Journal of Differential Equations, Volume 268 (2020) no. 11, p. 6940 | DOI:10.1016/j.jde.2019.11.076
- Nonlinear stability of planar traveling waves in a chemotaxis model of tumor angiogenesis with chemical diffusion, Journal of Differential Equations, Volume 268 (2020) no. 7, p. 3449 | DOI:10.1016/j.jde.2019.09.061
- Asymptotic Behavior of a Tumor Angiogenesis Model with Haptotaxis, Mathematics, Volume 8 (2020) no. 5, p. 664 | DOI:10.3390/math8050664
- Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces, Nonlinear Analysis, Volume 196 (2020), p. 111782 | DOI:10.1016/j.na.2020.111782
- Mathematical Research for Models Which is Related to Chemotaxis System, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications (2019), p. 351 | DOI:10.1007/978-3-030-15242-0_12
- Convergence of boundary layers for the Keller–Segel system with singular sensitivity in the half-plane, Journal de Mathématiques Pures et Appliquées, Volume 130 (2019), p. 251 | DOI:10.1016/j.matpur.2019.01.008
- Large time behavior of solutions to a fully parabolic chemotaxis–haptotaxis model in N dimensions, Journal of Differential Equations, Volume 266 (2019) no. 4, p. 1969 | DOI:10.1016/j.jde.2018.08.018
- Global existence and time decay estimate of solutions to the Keller–Segel system, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 1, p. 375 | DOI:10.1002/mma.5352
- Existence result for degenerate cross-diffusion system with application to seawater intrusion, ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 4, p. 1735 | DOI:10.1051/cocv/2017058
- Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, Journal de Mathématiques Pures et Appliquées, Volume 112 (2018), p. 118 | DOI:10.1016/j.matpur.2017.11.002
- Stability of planar traveling waves in a Keller–Segel equation on an infinite strip domain, Journal of Differential Equations, Volume 265 (2018) no. 1, p. 237 | DOI:10.1016/j.jde.2018.02.034
- Nonlinear stability of strong traveling waves for the singular Keller–Segel system with large perturbations, Journal of Differential Equations, Volume 265 (2018) no. 6, p. 2577 | DOI:10.1016/j.jde.2018.04.041
- Decay of a 3-D hyperbolic-parabolic system modeling chemotaxis, Journal of Information and Optimization Sciences, Volume 39 (2018) no. 7, p. 1505 | DOI:10.1080/02522667.2017.1386902
- Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 7, p. 2615 | DOI:10.1002/mma.4762
- A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, Volume 31 (2018) no. 10, p. 4602 | DOI:10.1088/1361-6544/aad307
- Stability of Boundary Layers for a Viscous Hyperbolic System Arising from Chemotaxis: One-Dimensional Case, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, p. 3058 | DOI:10.1137/17m112748x
- Wave features of a hyperbolic reaction–diffusion model for Chemotaxis, Wave Motion, Volume 78 (2018), p. 116 | DOI:10.1016/j.wavemoti.2018.02.004
- Large time behavior for a multidimensional chemotaxis model, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0772-2
- Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 1, p. 627 | DOI:10.3934/dcds.2017026
- Bounded global solutions to a Keller–Segel system with nondiffusive chemical in
R n, Journal of Evolution Equations, Volume 17 (2017) no. 2, p. 627 | DOI:10.1007/s00028-016-0330-x - Do some chemotaxis-growth models possess Lyapunov functionals?, Applied Mathematics Letters, Volume 53 (2016), p. 107 | DOI:10.1016/j.aml.2015.10.007
- Numerical study of plume patterns in a chemotaxis–diffusion–convection coupling system, Computers Fluids, Volume 126 (2016), p. 58 | DOI:10.1016/j.compfluid.2015.10.018
- Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model, Computers Mathematics with Applications, Volume 71 (2016) no. 9, p. 1898 | DOI:10.1016/j.camwa.2016.03.014
- From kinetic theory of multicellular systems to hyperbolic tissue equations: Asymptotic limits and computing, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 14, p. 2709 | DOI:10.1142/s0218202516500640
- Global existence and exponential stability for the strong solutions in H 2
to the 3-D chemotaxis model, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0375-8 - Reaction, diffusion and chemotaxis in wave propagation, Discrete Continuous Dynamical Systems - B, Volume 20 (2015) no. 1, p. 1 | DOI:10.3934/dcdsb.2015.20.1
- Bacterial chemotaxis without gradient-sensing, Journal of Mathematical Biology, Volume 70 (2015) no. 6, p. 1359 | DOI:10.1007/s00285-014-0790-y
- Traveling bands for the Keller-Segel model with population growth, Mathematical Biosciences and Engineering, Volume 12 (2015) no. 4, p. 717 | DOI:10.3934/mbe.2015.12.717
- Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, Volume 25 (2015) no. 09, p. 1663 | DOI:10.1142/s021820251550044x
- Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations, Communications in Partial Differential Equations, Volume 39 (2014) no. 7, p. 1205 | DOI:10.1080/03605302.2013.852224
- Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant, Journal of Differential Equations, Volume 257 (2014) no. 3, p. 784 | DOI:10.1016/j.jde.2014.04.014
- Well-posedness of a 3D parabolic–hyperbolic Keller–Segel system in the Sobolev space framework, Journal of Differential Equations, Volume 257 (2014) no. 5, p. 1311 | DOI:10.1016/j.jde.2014.05.014
- Global solutions to a chemotaxis system with non-diffusive memory, Journal of Mathematical Analysis and Applications, Volume 410 (2014) no. 2, p. 908 | DOI:10.1016/j.jmaa.2013.08.065
- Stability of traveling waves of the Keller–Segel system with logarithmic sensitivity, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 14, p. 2819 | DOI:10.1142/s0218202514500389
- Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 6, p. 2271 | DOI:10.3934/dcds.2013.33.2271
- Mathematics of traveling waves in chemotaxis –Review paper–, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 3, p. 601 | DOI:10.3934/dcdsb.2013.18.601
- Global analysis of smooth solutions to a hyperbolic-parabolic coupled system, Frontiers of Mathematics in China, Volume 8 (2013) no. 6, p. 1437 | DOI:10.1007/s11464-013-0331-9
- Global Existence and Convergence Rates for the Strong Solutions inH2to the 3D Chemotaxis Model, Journal of Applied Mathematics, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/391056
- Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 1, p. 465 | DOI:10.1016/j.nonrwa.2012.07.009
- Wavefront of an angiogenesis model, Discrete and Continuous Dynamical Systems - Series B, Volume 17 (2012) no. 8, p. 2849 | DOI:10.3934/dcdsb.2012.17.2849
- Blow up criterion for a hyperbolic–parabolic system arising from chemotaxis, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 2, p. 687 | DOI:10.1016/j.jmaa.2012.05.036
- Steadily propagating waves of a chemotaxis model, Mathematical Biosciences, Volume 240 (2012) no. 2, p. 161 | DOI:10.1016/j.mbs.2012.07.003
- Global Dynamics of a Hyperbolic-Parabolic Model Arising from Chemotaxis, SIAM Journal on Applied Mathematics, Volume 72 (2012) no. 1, p. 417 | DOI:10.1137/110829453
- Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 5, p. 825 | DOI:10.1007/s00033-012-0193-0
- ON A HYPERBOLIC–PARABOLIC SYSTEM MODELING CHEMOTAXIS, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 08, p. 1631 | DOI:10.1142/s0218202511005519
- Global Solutions to the Coupled Chemotaxis-Fluid Equations, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1635 | DOI:10.1080/03605302.2010.497199
- NONLINEAR STABILITY OF LARGE AMPLITUDE VISCOUS SHOCK WAVES OF A GENERALIZED HYPERBOLIC–PARABOLIC SYSTEM ARISING IN CHEMOTAXIS, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 11, p. 1967 | DOI:10.1142/s0218202510004830
- Local existence and uniqueness of solutions to approximate systems of 1D tumor invasion model, Nonlinear Analysis: Real World Applications, Volume 11 (2010) no. 5, p. 3555 | DOI:10.1016/j.nonrwa.2010.01.003
- Global solutions and asymptotic behavior for a parabolic degenerate coupled system arising from biology, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 1, p. 77 | DOI:10.1016/j.na.2009.06.083
- Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ2, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 10, p. 1449 | DOI:10.1002/cpa.20225
- Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2, Communications on Pure and Applied Mathematics (2007) | DOI:10.1002/cpa.20229
- Global Existence of Classical Solutions for a Haptotaxis Model, SIAM Journal on Mathematical Analysis, Volume 38 (2007) no. 5, p. 1694 | DOI:10.1137/060655122
- A Lyapunov function for a two-chemical species version of the chemotaxis model, BIT Numerical Mathematics, Volume 46 (2006) no. S1, p. 85 | DOI:10.1007/s10543-006-0086-8
- Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis: Real World Applications, Volume 6 (2005) no. 3, p. 477 | DOI:10.1016/j.nonrwa.2004.09.007
- Mathematical analysis and stability of a chemotaxis model with logistic term, Mathematical Methods in the Applied Sciences, Volume 27 (2004) no. 16, p. 1865 | DOI:10.1002/mma.528
- Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion, SIAM Journal on Mathematical Analysis, Volume 36 (2004) no. 1, p. 301 | DOI:10.1137/s0036141003427798
Cité par 73 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier