Comptes Rendus
Differential Geometry
S1-bundles and gerbes over differentiable stacks
Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 163-168.

We study S1-bundles and S1-gerbes over differentiable stacks in terms of Lie groupoids, and construct Chern classes and Dixmier–Douady classes in terms of analogues of connections and curvature.

Nous étudions les S1-fibrés et les S1-gerbes sur des champs différentiables en termes de groupoı̈des de Lie et nous construisons les classes de Chern et Dixmier–Douady en termes d'analogues des connexions et de leur courbure.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)00025-0

Kai Behrend 1; Ping Xu 2

1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver BC, V6T IZ2, Canada
2 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
@article{CRMATH_2003__336_2_163_0,
     author = {Kai Behrend and Ping Xu},
     title = {\protect\emph{S}\protect\textsuperscript{1}-bundles and gerbes over differentiable stacks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {163--168},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00025-0},
     language = {en},
}
TY  - JOUR
AU  - Kai Behrend
AU  - Ping Xu
TI  - S1-bundles and gerbes over differentiable stacks
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 163
EP  - 168
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00025-0
LA  - en
ID  - CRMATH_2003__336_2_163_0
ER  - 
%0 Journal Article
%A Kai Behrend
%A Ping Xu
%T S1-bundles and gerbes over differentiable stacks
%J Comptes Rendus. Mathématique
%D 2003
%P 163-168
%V 336
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)00025-0
%G en
%F CRMATH_2003__336_2_163_0
Kai Behrend; Ping Xu. S1-bundles and gerbes over differentiable stacks. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 163-168. doi : 10.1016/S1631-073X(02)00025-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00025-0/

[1] N. Hitchin Lectures on special Lagrangian submanifolds, AMS/IP Stud. Adv. Math., 23, American Mathematical Society, Providence, RI, 2001, pp. 151-182

[2] M.K. Murray Bundle gerbes, J. London Math. Soc. (2), Volume 54 (1996), pp. 403-416

[3] A. Weinstein; P. Xu Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189

Cited by Sources:

Comments - Policy