We study S1-bundles and S1-gerbes over differentiable stacks in terms of Lie groupoids, and construct Chern classes and Dixmier–Douady classes in terms of analogues of connections and curvature.
Nous étudions les S1-fibrés et les S1-gerbes sur des champs différentiables en termes de groupoı̈des de Lie et nous construisons les classes de Chern et Dixmier–Douady en termes d'analogues des connexions et de leur courbure.
Accepted:
Published online:
Kai Behrend 1; Ping Xu 2
@article{CRMATH_2003__336_2_163_0, author = {Kai Behrend and Ping Xu}, title = {\protect\emph{S}\protect\textsuperscript{1}-bundles and gerbes over differentiable stacks}, journal = {Comptes Rendus. Math\'ematique}, pages = {163--168}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00025-0}, language = {en}, }
Kai Behrend; Ping Xu. S1-bundles and gerbes over differentiable stacks. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 163-168. doi : 10.1016/S1631-073X(02)00025-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00025-0/
[1] Lectures on special Lagrangian submanifolds, AMS/IP Stud. Adv. Math., 23, American Mathematical Society, Providence, RI, 2001, pp. 151-182
[2] Bundle gerbes, J. London Math. Soc. (2), Volume 54 (1996), pp. 403-416
[3] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189
Cited by Sources:
Comments - Policy