Let be a nilpotent orbit in a semisimple complex Lie algebra . Denote by G the simply connected Lie group with Lie algebra . For a G-homogeneous covering , let X be the normalization of in the function field of M. In this Note, we study the existence of symplectic resolutions for such coverings X.
Soit une orbite nilpotente dans une algèbre de Lie semi-simple complexe . Soit G le groupe de Lie simplement connexe d'algèbre de Lie . Pour un revêtement G-homogène , notons X la normalisation de dans le corps de fonctions de M. Dans cette Note, nous étudions les résolutions symplectiques pour de telles variétés X.
Accepted:
Published online:
Baohua Fu 1
@article{CRMATH_2003__336_2_159_0, author = {Baohua Fu}, title = {Symplectic resolutions for coverings of nilpotent orbits}, journal = {Comptes Rendus. Math\'ematique}, pages = {159--162}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00011-6}, language = {en}, }
Baohua Fu. Symplectic resolutions for coverings of nilpotent orbits. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 159-162. doi : 10.1016/S1631-073X(03)00011-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00011-6/
[1] Nilpotent orbits, normality, and Hamiltonian group actions, J. Amer. Math. Soc., Volume 7 (1994), pp. 269-298
[2] Nilpotent Orbits in Semi-Simple Lie Algebras, Van Nostrand–Reinhold, New York, 1993
[3] Symplectic resolutions for nilpotent orbits, Invent. Math., Volume 151 (2003), pp. 167-186
[4] Polarizations in the classical groups, Math. Z., Volume 160 (1978), pp. 217-234
Cited by Sources:
Comments - Policy