Comptes Rendus
Probability Theory
Application of large deviation methods to the pricing of index options in finance
[Méthodes de grandes déviations et pricing d'options sur indice]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 263-266.

Nous montrons une formule asymptotique donnant la volatilité implicite d'une option sur indice à partir des volatilités des actifs sous-jacents. La démonstration repose sur les estimations de densités de diffusion en temps petit du type grandes déviation de Varadhan (Comm. Pure Appl. Math. 20 (1967)). On pourra trouver une version détaillée de ces résultats dans l'article (RISK 15 (10) (2002)).

We develop an asymptotic formula for calculating the implied volatility of European index options based on the volatility skews of the options on the underlying stocks and on a given correlation matrix for the basket. The derivation uses the steepest-descent approximation for evaluating the multivariate probability distribution function for stock prices, which is based on large-deviation estimates of diffusion processes densities by Varadhan (Comm. Pure Appl. Math. 20 (1967)). A detailed version of these results can be found in (RISK 15 (10) (2002)).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00032-3

Marco Avellaneda 1 ; Dash Boyer-Olson 1 ; Jérôme Busca 2 ; Peter Friz 1

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA
2 CNRS, Ceremade, Université Paris Dauphine, pl. du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2003__336_3_263_0,
     author = {Marco Avellaneda and Dash Boyer-Olson and J\'er\^ome Busca and Peter Friz},
     title = {Application of large deviation methods to the pricing of index options in finance},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {263--266},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00032-3},
     language = {en},
}
TY  - JOUR
AU  - Marco Avellaneda
AU  - Dash Boyer-Olson
AU  - Jérôme Busca
AU  - Peter Friz
TI  - Application of large deviation methods to the pricing of index options in finance
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 263
EP  - 266
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00032-3
LA  - en
ID  - CRMATH_2003__336_3_263_0
ER  - 
%0 Journal Article
%A Marco Avellaneda
%A Dash Boyer-Olson
%A Jérôme Busca
%A Peter Friz
%T Application of large deviation methods to the pricing of index options in finance
%J Comptes Rendus. Mathématique
%D 2003
%P 263-266
%V 336
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00032-3
%G en
%F CRMATH_2003__336_3_263_0
Marco Avellaneda; Dash Boyer-Olson; Jérôme Busca; Peter Friz. Application of large deviation methods to the pricing of index options in finance. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 263-266. doi : 10.1016/S1631-073X(03)00032-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00032-3/

[1] M. Avellaneda; D. Boyer-Olson; J. Busca; P. Friz Reconstruction of volatility; Pricing index options using the steepest-descent approximation, RISK Magazine, Volume 15 (2002) no. 10

[2] H. Berestycki; J. Busca; I. Florent An inverse parabolic problem arising in finance, C. R. Acad. Sci. Paris, Sér. I, Volume 331 (2000) no. 12, pp. 965-969

[3] H. Berestycki; J. Busca; I. Florent Asymptotics and calibration of local volatility models, Quantitative Finance, Volume 2 (2002) no. 1, pp. 61-69

[4] Britten-Jones; M.A. Neuberger Option prices, implied prices processes, and stochastic volatility, J. Finance, Volume 55 (2000) no. 2, pp. 839-866

[5] E. Derman; I. Kani Riding on a smile, RISK, Volume 7 (1994) no. 2

[6] E. Derman; I. Kani Kamal, Trading and hedging of local volatility, J. Financial Engrg., Volume 6 (1997) no. 3, pp. 233-270

[7] B. Dupire Pricing with a smile, RISK, Volume 7 (1994) no. 1

[8] J. Gatheral, Stochastic volatility and local volatility, in: Lecture Notes for Case Studies in Financial Modeling, M.S. Program in Math Finance, N.Y.U., 2001, http://www.math.nyu.edu/financial_mathematics

[9] J. Lim, Pricing and hedging options on baskets of stocks, Ph.D. Thesis, NYU, 2002

[10] M. Rubinstein Implied binomial trees, J. Finance, Volume 49 (1994) no. 3, pp. 771-819

[11] S.R.S. Varadhan On the behaviour of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., Volume 20 (1967)

  • Masaaki Fukasawa; Ryoji Takano A partial rough path space for rough volatility, Electronic Journal of Probability, Volume 29 (2024), p. 28 (Id/No 18) | DOI:10.1214/24-ejp1080 | Zbl:1534.60163
  • Dan Pirjol Smile Consistent Basket Skew, SSRN Electronic Journal (2024) | DOI:10.2139/ssrn.4702005
  • Toshihiro Yamada A new algorithm for computing path integrals and weak approximation of SDEs inspired by large deviations and Malliavin calculus, Applied Numerical Mathematics, Volume 187 (2023), pp. 192-205 | DOI:10.1016/j.apnum.2023.02.012 | Zbl:1533.60083
  • Peter K. Friz; Thomas Wagenhofer Reconstructing volatility: pricing of index options under rough volatility, Mathematical Finance, Volume 33 (2023) no. 1, pp. 19-40 | DOI:10.1111/mafi.12374 | Zbl:1521.91359
  • Rama Cont In memoriam: Marco Avellaneda (1955–2022), Mathematical Finance, Volume 33 (2023) no. 1, pp. 3-15 | DOI:10.1111/mafi.12375 | Zbl:1521.01026
  • Shihu Li; Wei Liu; Yingchao Xie Small time asymptotics for SPDEs with locally monotone coefficients, Discrete and Continuous Dynamical Systems. Series B, Volume 25 (2020) no. 12, pp. 4801-4822 | DOI:10.3934/dcdsb.2020127 | Zbl:1464.60066
  • Christian Bayer; Peter K. Friz; Paul Gassiat; Jorg Martin; Benjamin Stemper A regularity structure for rough volatility, Mathematical Finance, Volume 30 (2020) no. 3, pp. 782-832 | DOI:10.1111/mafi.12233 | Zbl:1508.91548
  • Nian Yao; Zhichao Ling; Jieyu Zhang; Mingqing Xiao Short maturity conditional Asian options in local volatility models, Mathematics and Financial Economics, Volume 14 (2020) no. 2, pp. 307-328 | DOI:10.1007/s11579-020-00257-y | Zbl:1437.91437
  • Stefano De Marco; Peter K. Friz Local volatility, conditioned diffusions, and Varadhan's formula, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 2, pp. 835-874 | DOI:10.1137/16m1092313 | Zbl:1410.91443
  • Archil Gulisashvili; Peter Tankov Tail behavior of sums and differences of log-normal random variables, Bernoulli, Volume 22 (2016) no. 1, pp. 444-493 | DOI:10.3150/14-bej665 | Zbl:1344.60036
  • Martino Bardi; Annalisa Cesaroni; Daria Ghilli Large deviations for some fast stochastic volatility models by viscosity methods, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 9, pp. 3965-3988 | DOI:10.3934/dcds.2015.35.3965 | Zbl:1332.93265
  • Amel Bentata; Rama Cont Forward equations for option prices in semimartingale models, Finance and Stochastics, Volume 19 (2015) no. 3, pp. 617-651 | DOI:10.1007/s00780-015-0265-z | Zbl:1325.60115
  • Christian Bayer; Peter Laurence Small-time asymptotics for the at-the-money implied volatility in a multi-dimensional local volatility model, Large deviations and asymptotic methods in finance, Cham: Springer, 2015, pp. 213-237 | DOI:10.1007/978-3-319-11605-1_7 | Zbl:1418.91595
  • Christian Bayer; Peter K. Friz; Peter Laurence On the probability density function of baskets, Large deviations and asymptotic methods in finance, Cham: Springer, 2015, pp. 449-472 | DOI:10.1007/978-3-319-11605-1_16 | Zbl:1418.91502
  • Julien Guyon Cross-Dependent Volatility, SSRN Electronic Journal (2015) | DOI:10.2139/ssrn.2615162
  • Christian Bayer; Peter Laurence Asymptotics beats Monte Carlo: the case of correlated local vol baskets, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 10, pp. 1618-1657 | DOI:10.1002/cpa.21488 | Zbl:1302.91193
  • J. D. Deuschel; P. K. Friz; A. Jacquier; S. Violante Marginal density expansions for diffusions and stochastic volatility. II: Applications, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 2, pp. 321-350 | DOI:10.1002/cpa.21483 | Zbl:1415.91326
  • Pascal Delanoo Local Correlation with Local Vol and Stochastic Vol, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2454668
  • Wanmo Kang; Chulmin Kang Large deviations for affine diffusion processes on R+m×Rn, Stochastic Processes and their Applications, Volume 124 (2014) no. 6, pp. 2188-2227 | DOI:10.1016/j.spa.2014.02.002 | Zbl:1309.60019
  • Julien Guyon A New Class of Local Correlation Models, SSRN Electronic Journal (2013) | DOI:10.2139/ssrn.2283419
  • Jin Feng; Jean-Pierre Fouque; Rohini Kumar Small-time asymptotics for fast mean-reverting stochastic volatility models, The Annals of Applied Probability, Volume 22 (2012) no. 4, pp. 1541-1575 | DOI:10.1214/11-aap801 | Zbl:1266.60049
  • Jin Feng; Martin Forde; Jean-Pierre Fouque Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 126 | DOI:10.1137/090745465
  • Scott Robertson Sample path large deviations and optimal importance sampling for stochastic volatility models, Stochastic Processes and their Applications, Volume 120 (2010) no. 1, pp. 66-83 | DOI:10.1016/j.spa.2009.10.010 | Zbl:1181.60041
  • Dilip B. Madan Pricing and Hedging Basket Options to Prespecified Levels of Acceptability, SSRN Electronic Journal (2009) | DOI:10.2139/ssrn.1540730
  • Shalom Benaim; Peter Friz; Roger Lee On Black‐Scholes Implied Volatility at Extreme Strikes, Frontiers in Quantitative Finance (2008), p. 19 | DOI:10.1002/9781118266915.ch2
  • Huyên Pham Some Applications and Methods of Large Deviations in Finance and Insurance, Paris-Princeton Lectures on Mathematical Finance 2004, Volume 1919 (2007), p. 191 | DOI:10.1007/978-3-540-73327-0_5
  • Henri Berestycki; Jérôme Busca; Igor Florent Computing the implied volatility in stochastic volatility models, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 10, pp. 1352-1373 | DOI:10.1002/cpa.20039 | Zbl:1181.91356

Cité par 27 documents. Sources : Crossref, zbMATH

Commentaires - Politique