[Méthodes de grandes déviations et pricing d'options sur indice]
Nous montrons une formule asymptotique donnant la volatilité implicite d'une option sur indice à partir des volatilités des actifs sous-jacents. La démonstration repose sur les estimations de densités de diffusion en temps petit du type grandes déviation de Varadhan (Comm. Pure Appl. Math. 20 (1967)). On pourra trouver une version détaillée de ces résultats dans l'article (RISK 15 (10) (2002)).
We develop an asymptotic formula for calculating the implied volatility of European index options based on the volatility skews of the options on the underlying stocks and on a given correlation matrix for the basket. The derivation uses the steepest-descent approximation for evaluating the multivariate probability distribution function for stock prices, which is based on large-deviation estimates of diffusion processes densities by Varadhan (Comm. Pure Appl. Math. 20 (1967)). A detailed version of these results can be found in (RISK 15 (10) (2002)).
Accepté le :
Publié le :
Marco Avellaneda 1 ; Dash Boyer-Olson 1 ; Jérôme Busca 2 ; Peter Friz 1
@article{CRMATH_2003__336_3_263_0, author = {Marco Avellaneda and Dash Boyer-Olson and J\'er\^ome Busca and Peter Friz}, title = {Application of large deviation methods to the pricing of index options in finance}, journal = {Comptes Rendus. Math\'ematique}, pages = {263--266}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00032-3}, language = {en}, }
TY - JOUR AU - Marco Avellaneda AU - Dash Boyer-Olson AU - Jérôme Busca AU - Peter Friz TI - Application of large deviation methods to the pricing of index options in finance JO - Comptes Rendus. Mathématique PY - 2003 SP - 263 EP - 266 VL - 336 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(03)00032-3 LA - en ID - CRMATH_2003__336_3_263_0 ER -
%0 Journal Article %A Marco Avellaneda %A Dash Boyer-Olson %A Jérôme Busca %A Peter Friz %T Application of large deviation methods to the pricing of index options in finance %J Comptes Rendus. Mathématique %D 2003 %P 263-266 %V 336 %N 3 %I Elsevier %R 10.1016/S1631-073X(03)00032-3 %G en %F CRMATH_2003__336_3_263_0
Marco Avellaneda; Dash Boyer-Olson; Jérôme Busca; Peter Friz. Application of large deviation methods to the pricing of index options in finance. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 263-266. doi : 10.1016/S1631-073X(03)00032-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00032-3/
[1] Reconstruction of volatility; Pricing index options using the steepest-descent approximation, RISK Magazine, Volume 15 (2002) no. 10
[2] An inverse parabolic problem arising in finance, C. R. Acad. Sci. Paris, Sér. I, Volume 331 (2000) no. 12, pp. 965-969
[3] Asymptotics and calibration of local volatility models, Quantitative Finance, Volume 2 (2002) no. 1, pp. 61-69
[4] Option prices, implied prices processes, and stochastic volatility, J. Finance, Volume 55 (2000) no. 2, pp. 839-866
[5] Riding on a smile, RISK, Volume 7 (1994) no. 2
[6] Kamal, Trading and hedging of local volatility, J. Financial Engrg., Volume 6 (1997) no. 3, pp. 233-270
[7] Pricing with a smile, RISK, Volume 7 (1994) no. 1
[8] J. Gatheral, Stochastic volatility and local volatility, in: Lecture Notes for Case Studies in Financial Modeling, M.S. Program in Math Finance, N.Y.U., 2001, http://www.math.nyu.edu/financial_mathematics
[9] J. Lim, Pricing and hedging options on baskets of stocks, Ph.D. Thesis, NYU, 2002
[10] Implied binomial trees, J. Finance, Volume 49 (1994) no. 3, pp. 771-819
[11] On the behaviour of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., Volume 20 (1967)
- A partial rough path space for rough volatility, Electronic Journal of Probability, Volume 29 (2024), p. 28 (Id/No 18) | DOI:10.1214/24-ejp1080 | Zbl:1534.60163
- Smile Consistent Basket Skew, SSRN Electronic Journal (2024) | DOI:10.2139/ssrn.4702005
- A new algorithm for computing path integrals and weak approximation of SDEs inspired by large deviations and Malliavin calculus, Applied Numerical Mathematics, Volume 187 (2023), pp. 192-205 | DOI:10.1016/j.apnum.2023.02.012 | Zbl:1533.60083
- Reconstructing volatility: pricing of index options under rough volatility, Mathematical Finance, Volume 33 (2023) no. 1, pp. 19-40 | DOI:10.1111/mafi.12374 | Zbl:1521.91359
- In memoriam: Marco Avellaneda (1955–2022), Mathematical Finance, Volume 33 (2023) no. 1, pp. 3-15 | DOI:10.1111/mafi.12375 | Zbl:1521.01026
- Small time asymptotics for SPDEs with locally monotone coefficients, Discrete and Continuous Dynamical Systems. Series B, Volume 25 (2020) no. 12, pp. 4801-4822 | DOI:10.3934/dcdsb.2020127 | Zbl:1464.60066
- A regularity structure for rough volatility, Mathematical Finance, Volume 30 (2020) no. 3, pp. 782-832 | DOI:10.1111/mafi.12233 | Zbl:1508.91548
- Short maturity conditional Asian options in local volatility models, Mathematics and Financial Economics, Volume 14 (2020) no. 2, pp. 307-328 | DOI:10.1007/s11579-020-00257-y | Zbl:1437.91437
- Local volatility, conditioned diffusions, and Varadhan's formula, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 2, pp. 835-874 | DOI:10.1137/16m1092313 | Zbl:1410.91443
- Tail behavior of sums and differences of log-normal random variables, Bernoulli, Volume 22 (2016) no. 1, pp. 444-493 | DOI:10.3150/14-bej665 | Zbl:1344.60036
- Large deviations for some fast stochastic volatility models by viscosity methods, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 9, pp. 3965-3988 | DOI:10.3934/dcds.2015.35.3965 | Zbl:1332.93265
- Forward equations for option prices in semimartingale models, Finance and Stochastics, Volume 19 (2015) no. 3, pp. 617-651 | DOI:10.1007/s00780-015-0265-z | Zbl:1325.60115
- Small-time asymptotics for the at-the-money implied volatility in a multi-dimensional local volatility model, Large deviations and asymptotic methods in finance, Cham: Springer, 2015, pp. 213-237 | DOI:10.1007/978-3-319-11605-1_7 | Zbl:1418.91595
- On the probability density function of baskets, Large deviations and asymptotic methods in finance, Cham: Springer, 2015, pp. 449-472 | DOI:10.1007/978-3-319-11605-1_16 | Zbl:1418.91502
- Cross-Dependent Volatility, SSRN Electronic Journal (2015) | DOI:10.2139/ssrn.2615162
- Asymptotics beats Monte Carlo: the case of correlated local vol baskets, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 10, pp. 1618-1657 | DOI:10.1002/cpa.21488 | Zbl:1302.91193
- Marginal density expansions for diffusions and stochastic volatility. II: Applications, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 2, pp. 321-350 | DOI:10.1002/cpa.21483 | Zbl:1415.91326
- Local Correlation with Local Vol and Stochastic Vol, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2454668
- Large deviations for affine diffusion processes on
, Stochastic Processes and their Applications, Volume 124 (2014) no. 6, pp. 2188-2227 | DOI:10.1016/j.spa.2014.02.002 | Zbl:1309.60019 - A New Class of Local Correlation Models, SSRN Electronic Journal (2013) | DOI:10.2139/ssrn.2283419
- Small-time asymptotics for fast mean-reverting stochastic volatility models, The Annals of Applied Probability, Volume 22 (2012) no. 4, pp. 1541-1575 | DOI:10.1214/11-aap801 | Zbl:1266.60049
- Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 126 | DOI:10.1137/090745465
- Sample path large deviations and optimal importance sampling for stochastic volatility models, Stochastic Processes and their Applications, Volume 120 (2010) no. 1, pp. 66-83 | DOI:10.1016/j.spa.2009.10.010 | Zbl:1181.60041
- Pricing and Hedging Basket Options to Prespecified Levels of Acceptability, SSRN Electronic Journal (2009) | DOI:10.2139/ssrn.1540730
- On Black‐Scholes Implied Volatility at Extreme Strikes, Frontiers in Quantitative Finance (2008), p. 19 | DOI:10.1002/9781118266915.ch2
- Some Applications and Methods of Large Deviations in Finance and Insurance, Paris-Princeton Lectures on Mathematical Finance 2004, Volume 1919 (2007), p. 191 | DOI:10.1007/978-3-540-73327-0_5
- Computing the implied volatility in stochastic volatility models, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 10, pp. 1352-1373 | DOI:10.1002/cpa.20039 | Zbl:1181.91356
Cité par 27 documents. Sources : Crossref, zbMATH
Commentaires - Politique