Dans cette Note, nous présentons une solution au problème du label des gaps pour les quasi-cristaux et démontrons ainsi la validité de la conjecture de Bellissard. Nous utilisons le théorème de l'indice mesuré pour les laminations d'un coté et la naturalité du caractère de Chern longitudinal de l'autre.
We give in the present Note a proof of the Bellissard gap-labelling conjecture for quasi-crystals. Our main tools are the measured index theorem for laminations on the one hand, and the naturality of the longitudinal Chern character on the other hand.
Accepté le :
Publié le :
Moulay-Tahar Benameur 1 ; Hervé Oyono-Oyono 2
@article{CRMATH_2002__334_8_667_0, author = {Moulay-Tahar Benameur and Herv\'e Oyono-Oyono}, title = {Calcul du label des gaps pour les quasi-cristaux}, journal = {Comptes Rendus. Math\'ematique}, pages = {667--670}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02312-9}, language = {fr}, }
Moulay-Tahar Benameur; Hervé Oyono-Oyono. Calcul du label des gaps pour les quasi-cristaux. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 667-670. doi : 10.1016/S1631-073X(02)02312-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02312-9/
[1] Gap labelling theorem's for Schrödinger's operators (M. Waldschmidt; P. Moussa; J.M. Luck; C. Itzykson, eds.), From Number Theory to Physics, Springer, 1992, pp. 538-630
[2] K-théorie des quasicristaux, image par la trace : le cas du réseau octogonal, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 197-200
[3] M.T. Benameur, H. Oyono-Oyono, Computation of the gap-labelling for quasi-crystal: a foliation approach, Preprint 2001
[4] Noncommutative Geometry, Academic Press, New York, 1994
[5] The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 1139-1183
[6] The cohomology and K-theory of commuting homeomorphisms of the Cantor set, Ergodic Theory Dynamical Systems, Volume 19 (1999), pp. 611-625
[7] Global Analysis on Foliated Spaces, Springer, Berlin, 1988
- Gap labeling theorem for multilayer thin film heterostructures, Physical Review B, Volume 107 (2023) no. 6 | DOI:10.1103/physrevb.107.064201
- Gap-labelling conjecture with nonzero magnetic field, Advances in Mathematics, Volume 325 (2018), pp. 116-164 | DOI:10.1016/j.aim.2017.11.030 | Zbl:1381.58012
- Spectral structures and topological methods in mathematical quasicrystals. Abstracts from the workshop held October 1–7, 2017, Oberwolfach Rep. 14, No. 4, 2781-2845, 2017 | DOI:10.4171/owr/2017/46 | Zbl:1409.00064
- Index theory for quasi-crystals. I: Computation of the gap-label group, Journal of Functional Analysis, Volume 252 (2007) no. 1, pp. 137-170 | DOI:10.1016/j.jfa.2006.03.029 | Zbl:1134.46046
- Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications, 9, Cambridge: Cambridge University Press, 2006 | Zbl:1091.58015
- Crossed products of the Cantor set by free minimal actions of
, Communications in Mathematical Physics, Volume 256 (2005) no. 1, pp. 1-42 | DOI:10.1007/s00220-004-1171-y | Zbl:1084.46056 - A proof of the gap labeling conjecture, Michigan Mathematical Journal, Volume 51 (2003) no. 3 | DOI:10.1307/mmj/1070919558
- A proof of the gap labeling conjecture, Michigan Mathematical Journal, Volume 51 (2003) no. 3, pp. 537-546 | Zbl:1054.46047
- A higher Lefschetz formula for flat bundles, Transactions of the American Mathematical Society, Volume 355 (2003) no. 1, pp. 119-142 | DOI:10.1090/s0002-9947-02-03111-2 | Zbl:1014.19002
- Computation of the gap-labelling for quasi-crystals, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 334 (2002) no. 8, pp. 667-670 | DOI:10.1016/s1631-073x(02)02312-9 | Zbl:0996.19006
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier