Dans cette Note, nous étudions le système de Stokes avec flux de vitesse et pression imposés, dans un domaine borné, à bord régulier par morceaux.
In this Note, we study the Stokes equations with imposed velocity fluxes and pressure, in a bounded domain, with a piecewise smooth boundary.
Accepté le :
Publié le :
Patrick Ciarlet 1
@article{CRMATH_2003__337_2_119_0, author = {Patrick Ciarlet}, title = {Syst\`eme de {Stokes} avec flux de vitesse et pression impos\'es}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--124}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00270-X}, language = {fr}, }
Patrick Ciarlet. Système de Stokes avec flux de vitesse et pression imposés. Comptes Rendus. Mathématique, Volume 337 (2003) no. 2, pp. 119-124. doi : 10.1016/S1631-073X(03)00270-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00270-X/
[1] A three field stabilized finite element method for the Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 603-608
[2] Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[3] F. Assous, P. Ciarlet, Jr., E. Garcia, Singular electromagnetic fields in a polyhedral domain, en préparation
[4] A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain, Math. Methods Appl. Sci., Volume 22 (1999), pp. 485-499
[5] Navier–Stokes equations with imposed pressure and velocity fluxes, J. Numer. Methods Fluids, Volume 20 (1995), pp. 267-287
[6] A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl., Volume 157 (1991), pp. 527-541
[7] Singularities of Maxwell interface problems, Math. Mod. Numer. Anal., Volume 33 (1999), pp. 627-649
[8] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997), pp. 957-991
[9] Finite Element Methods for Navier–Stokes Equations, Springer Ser. Comput. Math., 1341, Springer-Verlag, Berlin, 1986
- Fluid Equations, Equations of Motion for Incompressible Viscous Fluids (2021), p. 41 | DOI:10.1007/978-3-030-78659-5_2
- Equatorial wave-current interactions, Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27–31, 2018, Cham: Birkhäuser, 2021, pp. 49-92 | DOI:10.1007/978-3-030-67845-6_2 | Zbl:1479.76113
- Regularity of solutions to the Navier-Stokes equations with a nonstandard boundary condition, Acta Mathematicae Applicatae Sinica. English Series, Volume 31 (2015) no. 3, pp. 707-718 | DOI:10.1007/s10255-015-0497-x | Zbl:1321.35136
- Some properties on the surfaces of vector fields and its application to the Stokes and Navier-Stokes problems with mixed boundary conditions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 113 (2015), pp. 94-114 | DOI:10.1016/j.na.2014.09.017 | Zbl:1304.35551
- Local Exact Controllability of the Navier–Stokes Equations with the Condition on the Pressure on Parts of the Boundary, SIAM Journal on Control and Optimization, Volume 48 (2010) no. 6, p. 3805 | DOI:10.1137/060650143
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier