Dans cette Note nous généralisons un théorème de Gangbo et Swiech, sur une solution au problème de Monge pour n probabilités avec la distance de Wasserstein. Dans le cadre des espaces d'Orlicz et plus généralement celui des espaces de Köthe, nous étudions ce problème pour une fonction
In this Note, we generalize Gangbo–Swiech theorem for the Monge–Kantorovich problem. We study this problem for Orlicz and Köthe spaces when the function c has the form
Révisé le :
Publié le :
Henri Heinich 1
@article{CRMATH_2002__334_9_793_0, author = {Henri Heinich}, title = {Probl\`eme de {Monge} pour $ \mathbf{n}$ probabilit\'es}, journal = {Comptes Rendus. Math\'ematique}, pages = {793--795}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02341-5}, language = {fr}, }
Henri Heinich. Problème de Monge pour $ \mathbf{n}$ probabilités. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 793-795. doi : 10.1016/S1631-073X(02)02341-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02341-5/
[1] Caractérisation d'une solution optimale au problème de Monge–Kantorovich, Bull. Soc. Math. France, Volume 127 (1999) no. 3, pp. 429-443
[2] Transport problem and derivation, Appl. Math., Volume 26 (1999) no. 3, pp. 299-314
[3] Applications de dualité dans les espaces de Köthe, Stud. Math., Volume 43 (1989), pp. 41-69
[4] The geometry of optimal transportation, Acta Math., Volume 177 (1996), pp. 113-161
[5] Optimal maps for the multidimensional Monge–Kantorovich problem, Comm. Pure Appl. Math., Volume LI (1998), pp. 23-45
[6] H. Heinich, Monge problem and Köthe functionals, Preprint, 2001
[7] On a generalization of cyclic monotonicity and distances among random vectors, Linear Algebra Appl., Volume 199 (1994), pp. 367-371
[8] Classical Banach Spaces, Springer, Berlin, 1996
[9] Mass Transportation Problems, Springer, New York, 1998
[10] L. Rüschendorf, L. Uckelmann, On the n-coupling problem, Preprint of the Institut für Math. Stochastik, University of Freiburg, 1998
- Sufficiency of
-cyclical monotonicity in a class of multi-marginal optimal transport problems, European Journal of Applied Mathematics, Volume 36 (2025) no. 1, p. 68 | DOI:10.1017/s0956792524000202 -
-Wasserstein barycenters, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 251 (2025), p. 19 (Id/No 113687) | DOI:10.1016/j.na.2024.113687 | Zbl:7955749 - Convergence rate of entropy-regularized multi-marginal optimal transport costs, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000257
- Existence and uniqueness of Monge minimizers for a multi-marginal optimal transport problem with intermolecular interactions cost, Journal of Convex Analysis, Volume 31 (2024) no. 2, pp. 603-618 | Zbl:1540.49054
- A general framework for multi-marginal optimal transport, Mathematical Programming. Series A. Series B, Volume 208 (2024) no. 1-2 (A), pp. 75-110 | DOI:10.1007/s10107-023-02032-5 | Zbl:1551.49046
- Monge solutions and uniqueness in multi-marginal optimal transport via graph theory, Advances in Mathematics, Volume 428 (2023), p. 43 (Id/No 109101) | DOI:10.1016/j.aim.2023.109101 | Zbl:1517.49029
- On deterministic solutions for multi-marginal optimal transport with Coulomb cost, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 4, pp. 1189-1208 | DOI:10.3934/cpaa.2022015 | Zbl:1494.49030
- Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces, Journal of Mathematical Analysis and Applications, Volume 502 (2021) no. 1, p. 31 (Id/No 125147) | DOI:10.1016/j.jmaa.2021.125147 | Zbl:1466.49044
- Multi-marginal optimal transportation problem for cyclic costs, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, pp. 4386-4400 | DOI:10.1137/19m130889x | Zbl:1470.49076
- On
-cyclical monotonicity for optimal transport problem with Coulomb cost, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, pp. 1210-1219 | DOI:10.1017/s0956792519000111 | Zbl:1428.49013 - Nonexistence of optimal transport maps for the multimarginal repulsive harmonic cost, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2359-2371 | DOI:10.1137/18m1186514 | Zbl:1431.49054
- A simple counterexample to the Monge ansatz in multimarginal optimal transport, convex geometry of the set of Kantorovich plans, and the Frenkel-Kontorova model, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, pp. 4332-4355 | DOI:10.1137/18m1207326 | Zbl:1429.49048
- Continuity and estimates for multimarginal optimal transportation problems with singular costs, Applied Mathematics and Optimization, Volume 78 (2018) no. 1, pp. 185-200 | DOI:10.1007/s00245-017-9403-7 | Zbl:1400.49051
- Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional, Archive for Rational Mechanics and Analysis, Volume 228 (2018) no. 3, pp. 891-922 | DOI:10.1007/s00205-017-1208-y | Zbl:1394.82015
- Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 4, pp. 3996-4019 | DOI:10.1137/17m1150025 | Zbl:1395.49009
- Solutions to multi-marginal optimal transport problems concentrated on several graphs, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 23 (2017) no. 2, pp. 551-567 | DOI:10.1051/cocv/2016003 | Zbl:1358.49021
- Invariance properties of the Monge-Kantorovich mass transport problem, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 5, pp. 2653-2671 | DOI:10.3934/dcds.2016.36.2653 | Zbl:1334.49145
- An explicit martingale version of the one-dimensional Brenier's theorem with full marginals constraint, Stochastic Processes and their Applications, Volume 126 (2016) no. 9, pp. 2800-2834 | DOI:10.1016/j.spa.2016.03.003 | Zbl:1346.60058
- Infinite-body optimal transport with Coulomb cost, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 1, pp. 717-742 | DOI:10.1007/s00526-014-0803-0 | Zbl:1322.49073
- Multi-marginal optimal transport: Theory and applications, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 6, p. 1771 | DOI:10.1051/m2an/2015020
- Problèmes de transport multi-marginal de Monge-Kantorovich : une caractérisation des solutions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 352 (2014) no. 12, pp. 993-998 | DOI:10.1016/j.crma.2014.10.004 | Zbl:1305.49071
- Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 4, pp. 1623-1639 | DOI:10.3934/dcds.2014.34.1623 | Zbl:1278.49054
- A General Condition for Monge Solutions in the Multi-Marginal Optimal Transport Problem, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 2, p. 1538 | DOI:10.1137/130930443
- An Explicit Martingale Version of the One-Dimensional Brenier's Theorem with Full Marginals Constraint, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2335969
- Optimal transportation with infinitely many marginals, Journal of Functional Analysis, Volume 264 (2013) no. 4, p. 947 | DOI:10.1016/j.jfa.2012.12.002
- On a Class of Optimal Transportation Problems with Infinitely Many Marginals, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 4, p. 2557 | DOI:10.1137/120881427
- On the local structure of optimal measures in the multi-marginal optimal transportation problem, Calculus of Variations and Partial Differential Equations, Volume 43 (2012) no. 3-4, pp. 529-536 | DOI:10.1007/s00526-011-0421-z | Zbl:1231.49037
- Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 6, p. 2758 | DOI:10.1137/100804917
Cité par 28 documents. Sources : Crossref, zbMATH
Commentaires - Politique