Comptes Rendus
Problème de Monge pour 𝐧 probabilités
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 793-795.

Dans cette Note nous généralisons un théorème de Gangbo et Swiech, sur une solution au problème de Monge pour n probabilités avec la distance de Wasserstein. Dans le cadre des espaces d'Orlicz et plus généralement celui des espaces de Köthe, nous étudions ce problème pour une fonction c(x1,...,xn)=h(xi),h convexe sur d.

In this Note, we generalize Gangbo–Swiech theorem for the Monge–Kantorovich problem. We study this problem for Orlicz and Köthe spaces when the function c has the form c(x1,...,xn)=h(xi),h convex on d.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02341-5

Henri Heinich 1

1 INSA de Rouen, Département de génie mathématique, place E. Blondel, 76131 Mont-Saint-Aignan cedex, France
@article{CRMATH_2002__334_9_793_0,
     author = {Henri Heinich},
     title = {Probl\`eme de {Monge} pour $ \mathbf{n}$ probabilit\'es},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--795},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02341-5},
     language = {fr},
}
TY  - JOUR
AU  - Henri Heinich
TI  - Problème de Monge pour $ \mathbf{n}$ probabilités
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 793
EP  - 795
VL  - 334
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02341-5
LA  - fr
ID  - CRMATH_2002__334_9_793_0
ER  - 
%0 Journal Article
%A Henri Heinich
%T Problème de Monge pour $ \mathbf{n}$ probabilités
%J Comptes Rendus. Mathématique
%D 2002
%P 793-795
%V 334
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02341-5
%G fr
%F CRMATH_2002__334_9_793_0
Henri Heinich. Problème de Monge pour $ \mathbf{n}$ probabilités. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 793-795. doi : 10.1016/S1631-073X(02)02341-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02341-5/

[1] T. Abdellaoui; H. Heinich Caractérisation d'une solution optimale au problème de Monge–Kantorovich, Bull. Soc. Math. France, Volume 127 (1999) no. 3, pp. 429-443

[2] N. Belili; H. Heinich Transport problem and derivation, Appl. Math., Volume 26 (1999) no. 3, pp. 299-314

[3] B. Bru; H. Heinich Applications de dualité dans les espaces de Köthe, Stud. Math., Volume 43 (1989), pp. 41-69

[4] W. Gangbo; R.J. McCann The geometry of optimal transportation, Acta Math., Volume 177 (1996), pp. 113-161

[5] W. Gangbo; A.J. Świech Optimal maps for the multidimensional Monge–Kantorovich problem, Comm. Pure Appl. Math., Volume LI (1998), pp. 23-45

[6] H. Heinich, Monge problem and Köthe functionals, Preprint, 2001

[7] M. Knott; C.S. Smith On a generalization of cyclic monotonicity and distances among random vectors, Linear Algebra Appl., Volume 199 (1994), pp. 367-371

[8] J. Lindenstrauss; L. Tzafriri Classical Banach Spaces, Springer, Berlin, 1996

[9] S.T. Rachev; L. Rüschendorf Mass Transportation Problems, Springer, New York, 1998

[10] L. Rüschendorf, L. Uckelmann, On the n-coupling problem, Preprint of the Institut für Math. Stochastik, University of Freiburg, 1998

  • Luigi De Pascale; Anna Kausamo Sufficiency of c -cyclical monotonicity in a class of multi-marginal optimal transport problems, European Journal of Applied Mathematics, Volume 36 (2025) no. 1, p. 68 | DOI:10.1017/s0956792524000202
  • Camilla Brizzi; Gero Friesecke; Tobias Ried p-Wasserstein barycenters, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 251 (2025), p. 19 (Id/No 113687) | DOI:10.1016/j.na.2024.113687 | Zbl:7955749
  • Luca Nenna; Paul Pegon Convergence rate of entropy-regularized multi-marginal optimal transport costs, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000257
  • Augusto Gerolin; Mircea Petrache; Adolfo Vargas-Jiménez Existence and uniqueness of Monge minimizers for a multi-marginal optimal transport problem with intermolecular interactions cost, Journal of Convex Analysis, Volume 31 (2024) no. 2, pp. 603-618 | Zbl:1540.49054
  • Brendan Pass; Adolfo Vargas-Jiménez A general framework for multi-marginal optimal transport, Mathematical Programming. Series A. Series B, Volume 208 (2024) no. 1-2 (A), pp. 75-110 | DOI:10.1007/s10107-023-02032-5 | Zbl:1551.49046
  • Brendan Pass; Adolfo Vargas-Jiménez Monge solutions and uniqueness in multi-marginal optimal transport via graph theory, Advances in Mathematics, Volume 428 (2023), p. 43 (Id/No 109101) | DOI:10.1016/j.aim.2023.109101 | Zbl:1517.49029
  • Ugo Bindini; Luigi De Pascale; Anna Kausamo On deterministic solutions for multi-marginal optimal transport with Coulomb cost, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 4, pp. 1189-1208 | DOI:10.3934/cpaa.2022015 | Zbl:1494.49030
  • Daniela Vögler Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces, Journal of Mathematical Analysis and Applications, Volume 502 (2021) no. 1, p. 31 (Id/No 125147) | DOI:10.1016/j.jmaa.2021.125147 | Zbl:1466.49044
  • Brendan W. Pass; Adolfo Vargas-Jiménez Multi-marginal optimal transportation problem for cyclic costs, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, pp. 4386-4400 | DOI:10.1137/19m130889x | Zbl:1470.49076
  • Luigi De Pascale On c-cyclical monotonicity for optimal transport problem with Coulomb cost, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, pp. 1210-1219 | DOI:10.1017/s0956792519000111 | Zbl:1428.49013
  • Augusto Gerolin; Anna Kausamo; Tapio Rajala Nonexistence of optimal transport maps for the multimarginal repulsive harmonic cost, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2359-2371 | DOI:10.1137/18m1186514 | Zbl:1431.49054
  • Gero Friesecke A simple counterexample to the Monge ansatz in multimarginal optimal transport, convex geometry of the set of Kantorovich plans, and the Frenkel-Kontorova model, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, pp. 4332-4355 | DOI:10.1137/18m1207326 | Zbl:1429.49048
  • Giuseppe Buttazzo; Thierry Champion; Luigi De Pascale Continuity and estimates for multimarginal optimal transportation problems with singular costs, Applied Mathematics and Optimization, Volume 78 (2018) no. 1, pp. 185-200 | DOI:10.1007/s00245-017-9403-7 | Zbl:1400.49051
  • Codina Cotar; Gero Friesecke; Claudia Klüppelberg Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional, Archive for Rational Mechanics and Analysis, Volume 228 (2018) no. 3, pp. 891-922 | DOI:10.1007/s00205-017-1208-y | Zbl:1394.82015
  • Gero Friesecke; Daniela Vögler Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 4, pp. 3996-4019 | DOI:10.1137/17m1150025 | Zbl:1395.49009
  • Abbas Moameni; Brendan Pass Solutions to multi-marginal optimal transport problems concentrated on several graphs, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 23 (2017) no. 2, pp. 551-567 | DOI:10.1051/cocv/2016003 | Zbl:1358.49021
  • Abbas Moameni Invariance properties of the Monge-Kantorovich mass transport problem, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 5, pp. 2653-2671 | DOI:10.3934/dcds.2016.36.2653 | Zbl:1334.49145
  • Pierre Henry-Labordère; Xiaolu Tan; Nizar Touzi An explicit martingale version of the one-dimensional Brenier's theorem with full marginals constraint, Stochastic Processes and their Applications, Volume 126 (2016) no. 9, pp. 2800-2834 | DOI:10.1016/j.spa.2016.03.003 | Zbl:1346.60058
  • Codina Cotar; Gero Friesecke; Brendan Pass Infinite-body optimal transport with Coulomb cost, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 1, pp. 717-742 | DOI:10.1007/s00526-014-0803-0 | Zbl:1322.49073
  • Brendan Pass Multi-marginal optimal transport: Theory and applications, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 6, p. 1771 | DOI:10.1051/m2an/2015020
  • Abbas Moameni Problèmes de transport multi-marginal de Monge-Kantorovich : une caractérisation des solutions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 352 (2014) no. 12, pp. 993-998 | DOI:10.1016/j.crma.2014.10.004 | Zbl:1305.49071
  • Brendan Pass Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 4, pp. 1623-1639 | DOI:10.3934/dcds.2014.34.1623 | Zbl:1278.49054
  • Young-Heon Kim; Brendan Pass A General Condition for Monge Solutions in the Multi-Marginal Optimal Transport Problem, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 2, p. 1538 | DOI:10.1137/130930443
  • Pierre Henry-Labordere; Xiaolu Tan; Nizar Touzi An Explicit Martingale Version of the One-Dimensional Brenier's Theorem with Full Marginals Constraint, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2335969
  • Brendan Pass Optimal transportation with infinitely many marginals, Journal of Functional Analysis, Volume 264 (2013) no. 4, p. 947 | DOI:10.1016/j.jfa.2012.12.002
  • Brendan Pass On a Class of Optimal Transportation Problems with Infinitely Many Marginals, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 4, p. 2557 | DOI:10.1137/120881427
  • Brendan Pass On the local structure of optimal measures in the multi-marginal optimal transportation problem, Calculus of Variations and Partial Differential Equations, Volume 43 (2012) no. 3-4, pp. 529-536 | DOI:10.1007/s00526-011-0421-z | Zbl:1231.49037
  • Brendan Pass Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 6, p. 2758 | DOI:10.1137/100804917

Cité par 28 documents. Sources : Crossref, zbMATH

Commentaires - Politique