[Intégrale stochastique pour les processus gaussiens]
Nous construisons une intégrale stochastique du type Stratonovitch–Skorohod, pour les processus gaussiens généraux. Nous montrons qu'elle peut être approchée par des sommes de type Stratonovitch et nous établissons sa régularité trajectorielle. Nous étudions aussi la façon dont elle se transforme lors d'un changement absolument continu de probabilité. Nous montrons enfin que la formule d'Itô–Stratonovitch est vérifiée.
We construct a Stratonovitch–Skorohod-like stochastic integral for general Gaussian processes. We study its sample path regularity and one of its numerical approximating schemes. We also analyze the way it is transformed by an absolutely continuous change of probability and we give an Itô formula.
Accepté le :
Publié le :
Laurent Decreusefond 1
@article{CRMATH_2002__334_10_903_0, author = {Laurent Decreusefond}, title = {Stochastic integration with respect to {Gaussian} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--908}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02360-9}, language = {en}, }
Laurent Decreusefond. Stochastic integration with respect to Gaussian processes. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 903-908. doi : 10.1016/S1631-073X(02)02360-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02360-9/
[1] Stochastic Stratonovitch calculus for fractional Brownian motion with Hurst parameter less than 1/2, Taiwanese J. Math., Volume 5 (2001) no. 3, pp. 609-632
[2] Stochastic calculus with respect to Gaussian processes, Ann. Probab., Volume 29 (2001), pp. 766-801
[3] Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999) no. 5, pp. 435-440
[4] Regularity properties of some stochastic Volterra integrals with singular kernel, Potential Anal., Volume 16 (2002), pp. 139-149
[5] L. Decreusefond, Stochastic calculus for Volterra processes (2002), in preparation
[6] Stochastic analysis of the fractional Brownian motion, Potential Anal., Volume 10 (1999) no. 2, pp. 177-214
[7] On fractional Brownian processes, Potential Anal., Volume 10 (1999) no. 3, pp. 273-288
[8] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovitch Itô's formula for fractional Brownian motion with Hurst index ⩾1/4, Tech. Report 16, Université Paris XIII, 2001
[9] Differential equations driven by rough signals, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 215-310
[10] The Malliavin Calculus and Related Topics, Springer-Verlag, 1995
[11] On the relation between the Stratonovich and Ogawa integrals, Ann. Probab., Volume 17 (1989) no. 4, pp. 1536-1540
[12] Estimates of the Sobolev norm of a product of two functions, J. Math. Anal. Appl., Volume 255 (2001) no. 1, pp. 137-146
[13] The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus, Probab. Theory Related Fields, Volume 79 (1988), pp. 249-269
[14] Transformation of Measure on Wiener Space, Springer-Verlag, Berlin, 2000
[15] An Introduction to Analysis on Wiener Space, Lectures Notes in Math., 1610, Springer-Verlag, 1995
[16] Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory Related Fields, Volume 111 (1998) no. 3, pp. 333-374
Cité par Sources :
Commentaires - Politique