Comptes Rendus
Sur les équations α Navier–Stokes dans un ouvert borné
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 823-826.

On considère les équations α Navier–Stokes (LANS-α) dans un domaine borné de 3 . On montre l'existence et l'unicité globale des solutions, en supposant que la donnée initiale appartient à H10.

We consider the Lagrangian averaged Navier–Stokes (LANS-α) equations in a bounded domain of 3 . We prove global existence and uniqueness of solutions under the hypothesis that the initial data belongs to H10.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02369-5

Adriana Valentina Busuioc 1

1 Département de mathématiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Suisse
@article{CRMATH_2002__334_9_823_0,
     author = {Adriana Valentina Busuioc},
     title = {Sur les \'equations $ \mathbf{\alpha }$ {Navier{\textendash}Stokes} dans un ouvert born\'e},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {823--826},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02369-5},
     language = {fr},
}
TY  - JOUR
AU  - Adriana Valentina Busuioc
TI  - Sur les équations $ \mathbf{\alpha }$ Navier–Stokes dans un ouvert borné
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 823
EP  - 826
VL  - 334
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02369-5
LA  - fr
ID  - CRMATH_2002__334_9_823_0
ER  - 
%0 Journal Article
%A Adriana Valentina Busuioc
%T Sur les équations $ \mathbf{\alpha }$ Navier–Stokes dans un ouvert borné
%J Comptes Rendus. Mathématique
%D 2002
%P 823-826
%V 334
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02369-5
%G fr
%F CRMATH_2002__334_9_823_0
Adriana Valentina Busuioc. Sur les équations $ \mathbf{\alpha }$ Navier–Stokes dans un ouvert borné. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 823-826. doi : 10.1016/S1631-073X(02)02369-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02369-5/

[1] A. Valentina Busuioc On second grade fluids with vanishing viscosity, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999) no. 12, pp. 1241-1246

[2] R. Camassa; D.D. Holm An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664

[3] S. Chen; C. Foias; D.D. Holm; E. Olson; E.S. Titi; S. Wynne The Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., Volume 81 (1998), pp. 5338-5341

[4] D. Cioranescu; E.H. Ouazar Existence and uniqueness for fluids of second grade, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. VI, Paris, 1982/1983, Pitman, Boston, MA, 1984, pp. 178-197

[5] D. Coutand, J. Peirce, S. Shkoller, Global well-posedness of weak solutions for the Lagrangian averaged Navier–Stokes equations on bounded domains, Comm. Pure Appl. Anal., to appear

[6] C. Foias, D.D. Holm, E.S. Titi, The three-dimensional viscous Camassa–Holm equations and their relation to the Navier–Stokes equation and turbulence theory, J. Dynamics Differential Equations, to appear

[7] D.D. Holm; J.E. Marsden; T. Ratiu Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., Volume 80 (1998) no. 19, pp. 4173-4177

[8] S. Kouranbaeva The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., Volume 40 (1999) no. 2, pp. 857-868

[9] J.E. Marsden; S. Shkoller Global well-posedness for the LANS-α equations on bounded domains, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 1449-1468

[10] G. Misiolek A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys., Volume 24 (1998) no. 3, pp. 203-208

Cité par Sources :

Commentaires - Politique