On considère les équations α Navier–Stokes (LANS-α) dans un domaine borné de . On montre l'existence et l'unicité globale des solutions, en supposant que la donnée initiale appartient à H10.
We consider the Lagrangian averaged Navier–Stokes (LANS-α) equations in a bounded domain of . We prove global existence and uniqueness of solutions under the hypothesis that the initial data belongs to H10.
Accepté le :
Publié le :
Adriana Valentina Busuioc 1
@article{CRMATH_2002__334_9_823_0, author = {Adriana Valentina Busuioc}, title = {Sur les \'equations $ \mathbf{\alpha }$ {Navier{\textendash}Stokes} dans un ouvert born\'e}, journal = {Comptes Rendus. Math\'ematique}, pages = {823--826}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02369-5}, language = {fr}, }
Adriana Valentina Busuioc. Sur les équations $ \mathbf{\alpha }$ Navier–Stokes dans un ouvert borné. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 823-826. doi : 10.1016/S1631-073X(02)02369-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02369-5/
[1] On second grade fluids with vanishing viscosity, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999) no. 12, pp. 1241-1246
[2] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664
[3] The Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., Volume 81 (1998), pp. 5338-5341
[4] Existence and uniqueness for fluids of second grade, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. VI, Paris, 1982/1983, Pitman, Boston, MA, 1984, pp. 178-197
[5] D. Coutand, J. Peirce, S. Shkoller, Global well-posedness of weak solutions for the Lagrangian averaged Navier–Stokes equations on bounded domains, Comm. Pure Appl. Anal., to appear
[6] C. Foias, D.D. Holm, E.S. Titi, The three-dimensional viscous Camassa–Holm equations and their relation to the Navier–Stokes equation and turbulence theory, J. Dynamics Differential Equations, to appear
[7] Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., Volume 80 (1998) no. 19, pp. 4173-4177
[8] The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., Volume 40 (1999) no. 2, pp. 857-868
[9] Global well-posedness for the LANS-α equations on bounded domains, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 1449-1468
[10] A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys., Volume 24 (1998) no. 3, pp. 203-208
Cité par Sources :
Commentaires - Politique