[Classification complète des cycles homoclines de
Des cycles homoclines avec groupes de symétrie contenus dans SO(4) sont déjà apparus dans la littérature. Ces cycles ont 2, 3, 6, 8, 12 ou 24 points d'équilibre. Dans cette Note, on montre que cette classification est complète en utilisant un résultat sur les équations diophantiennes à angles rationnels.
Some homoclinic cycles in
Révisé le :
Publié le :
Nicola Sottocornola 1
@article{CRMATH_2002__334_10_859_0, author = {Nicola Sottocornola}, title = {Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {859--864}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02371-3}, language = {en}, }
TY - JOUR AU - Nicola Sottocornola TI - Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$ JO - Comptes Rendus. Mathématique PY - 2002 SP - 859 EP - 864 VL - 334 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(02)02371-3 LA - en ID - CRMATH_2002__334_10_859_0 ER -
%0 Journal Article %A Nicola Sottocornola %T Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$ %J Comptes Rendus. Mathématique %D 2002 %P 859-864 %V 334 %N 10 %I Elsevier %R 10.1016/S1631-073X(02)02371-3 %G en %F CRMATH_2002__334_10_859_0
Nicola Sottocornola. Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 859-864. doi : 10.1016/S1631-073X(02)02371-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02371-3/
[1] P. Ashwin, J. Montaldi, Conditions for existence of robust relative homoclinic trajectories, Math. Proc. Cambridge Philos. Soc., 2002, to appear
[2] Transverse bifurcation of homoclinic cycles, Phys. D, Volume 100 (1997), pp. 85-100
[3] Methods in Equivariant Bifurcation and Dynamical Systems, Adv. Ser. Nonlinear Dynam., 15, World Scientific, 2000
[4] Homographies Quaternions and Rotations, Oxford University Press, 1964
[5] Structurally stable heteroclinic cycles, Math. Proc. Cambridge Philos. Soc., Volume 103 (1988), pp. 189-192
[6] Robust heteroclinic cycles, J. Nonlinear Sci., Volume 7 (1997), pp. 129-176
[7] Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dynamical Systems, Volume 15 (1995) no. 1, pp. 121-147
[8] Rational products of sines of rational angles, Aequationes Math., Volume 45 (1993), pp. 70-82
[9] Some results on roots of unity, with an application to a diophantine problem, Aequationes Math., Volume 2 (1969), pp. 163-166
[10] Sur la classification des cycles homoclines, C. R. Acad. Sci. Paris, Serie I, Volume 332 (2001), pp. 695-698
[11] N. Sottocornola, Robust homoclinic cycles in
- Homoclinic and Heteroclinic Bifurcations in Vector Fields, Volume 3 (2010), p. 379 | DOI:10.1016/s1874-575x(10)00316-4
- Resonance bifurcation from homoclinic cycles, Journal of Differential Equations, Volume 246 (2009) no. 7, pp. 2681-2705 | DOI:10.1016/j.jde.2009.01.034 | Zbl:1170.34031
- Simple homoclinic cycles in low-dimensional spaces, Journal of Differential Equations, Volume 210 (2005) no. 1, pp. 135-154 | DOI:10.1016/j.jde.2004.10.023 | Zbl:1066.34042
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique