Comptes Rendus
Complete classification of homoclinic cycles in 4 in the case of a symmetry group 𝐆 SO (4)
[Classification complète des cycles homoclines de 4 dans le cas d'un groupe de symétrie 𝐆 SO (4)]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 859-864.

Des cycles homoclines avec groupes de symétrie contenus dans SO(4) sont déjà apparus dans la littérature. Ces cycles ont 2, 3, 6, 8, 12 ou 24 points d'équilibre. Dans cette Note, on montre que cette classification est complète en utilisant un résultat sur les équations diophantiennes à angles rationnels.

Some homoclinic cycles in 4 with symmetry groups contained in SO(4) have already appeared in the literature. These cycles have 2, 3, 6, 8, 12, or 24 equilibria. In this Note we show that this classification is complete using a result in diophantine trigonometric equations with rational angles.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02371-3
Nicola Sottocornola 1

1 Institut non-linéaire de Nice, UMR 6618 CNRS, 1361, route des Lucioles, 06560 Valbonne, France
@article{CRMATH_2002__334_10_859_0,
     author = {Nicola Sottocornola},
     title = {Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {859--864},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02371-3},
     language = {en},
}
TY  - JOUR
AU  - Nicola Sottocornola
TI  - Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 859
EP  - 864
VL  - 334
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02371-3
LA  - en
ID  - CRMATH_2002__334_10_859_0
ER  - 
%0 Journal Article
%A Nicola Sottocornola
%T Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$
%J Comptes Rendus. Mathématique
%D 2002
%P 859-864
%V 334
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02371-3
%G en
%F CRMATH_2002__334_10_859_0
Nicola Sottocornola. Complete classification of homoclinic cycles in $ \mathbb{R}^{\mathbf{4}}$ in the case of a symmetry group $ \mathbf{G\subset }\mathrm{SO}\mathbf{(4)}$. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 859-864. doi : 10.1016/S1631-073X(02)02371-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02371-3/

[1] P. Ashwin, J. Montaldi, Conditions for existence of robust relative homoclinic trajectories, Math. Proc. Cambridge Philos. Soc., 2002, to appear

[2] P. Chossat; M. Krupa; I. Melbourne; A. Scheel Transverse bifurcation of homoclinic cycles, Phys. D, Volume 100 (1997), pp. 85-100

[3] P. Chossat; R. Lauterbach Methods in Equivariant Bifurcation and Dynamical Systems, Adv. Ser. Nonlinear Dynam., 15, World Scientific, 2000

[4] P.Du Val Homographies Quaternions and Rotations, Oxford University Press, 1964

[5] J. Guckenheimer; P. Holmes Structurally stable heteroclinic cycles, Math. Proc. Cambridge Philos. Soc., Volume 103 (1988), pp. 189-192

[6] M. Krupa Robust heteroclinic cycles, J. Nonlinear Sci., Volume 7 (1997), pp. 129-176

[7] M. Krupa; I. Melbourne Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dynamical Systems, Volume 15 (1995) no. 1, pp. 121-147

[8] G. Myerson Rational products of sines of rational angles, Aequationes Math., Volume 45 (1993), pp. 70-82

[9] M. Newman Some results on roots of unity, with an application to a diophantine problem, Aequationes Math., Volume 2 (1969), pp. 163-166

[10] N. Sottocornola Sur la classification des cycles homoclines, C. R. Acad. Sci. Paris, Serie I, Volume 332 (2001), pp. 695-698

[11] N. Sottocornola, Robust homoclinic cycles in 4 , Nonlinearity, submitted

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Normal forms with exponentially small remainder: application to homoclinic connections for the reversible 02+iω resonance

Gérard Iooss; Eric Lombardi

C. R. Math (2004)


Partie scientifique

C. R. Math (2002)


Homoclinic solutions of reversible systems possessing an essential spectrum

Matthieu Barrandon

C. R. Math (2004)