Comptes Rendus
Viscoélastodynamique monodimensionnelle avec conditions de Signorini
Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 983-988.

Soit α un nombre strictement positif. Le problème viscoélastique monodimensionnel

utt-uxx-αuxxt=f,x(-,0],t[0,+),
avec les conditions au bord unilatérales
u(0,·)0,(ux+αuxt)(0,·)0,(u(ux+αuxt))(0,·)=0,
peut être réduit à l'inéquation variationnelle suivante :
λ1*w=g+b,w0,b0,w,b=0.
Ici λ^1(ω) est la détermination causale de iω1+iαω. On démontre que ce problème possède une solution et que les pertes d'énergie sont purement visqueuses ; ce résultat provient de la relation w˙,b=0, qui n'est pas triviale puisque, a priori, b est une mesure et w˙ n'est définie que presque partout.

Let α be a positive number. The one-dimensional viscoelastic problem

utt-uxx-αuxxt=f,x(-,0],t[0,+),
with unilateral boundary conditions
u(0,·)0,(ux+αuxt)(0,·)0,(u(ux+αuxt))(0,·)=0,
can be reduced to the following variational inequality:
λ1*w=g+b,w0,b0,w,b=0.
Here λ^1(ω) is the causal determination of iω1+iαω. We show that the energy losses are purely viscous; this result is a consequence of the relation w˙,b=0; since a priori, b is a measure and w˙ is defined only almost everywhere, this relation is not trivial.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02399-3

Adrien Petrov 1 ; Michelle Schatzman 1

1 MAPLY, CNRS et Université Claude Bernard-Lyon 1, Mathématiques, 21 avenue Claude Bernard, 69622 Villeurbanne cedex, France
@article{CRMATH_2002__334_11_983_0,
     author = {Adrien Petrov and Michelle Schatzman},
     title = {Visco\'elastodynamique monodimensionnelle avec conditions de {Signorini}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {983--988},
     publisher = {Elsevier},
     volume = {334},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02399-3},
     language = {fr},
}
TY  - JOUR
AU  - Adrien Petrov
AU  - Michelle Schatzman
TI  - Viscoélastodynamique monodimensionnelle avec conditions de Signorini
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 983
EP  - 988
VL  - 334
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02399-3
LA  - fr
ID  - CRMATH_2002__334_11_983_0
ER  - 
%0 Journal Article
%A Adrien Petrov
%A Michelle Schatzman
%T Viscoélastodynamique monodimensionnelle avec conditions de Signorini
%J Comptes Rendus. Mathématique
%D 2002
%P 983-988
%V 334
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02399-3
%G fr
%F CRMATH_2002__334_11_983_0
Adrien Petrov; Michelle Schatzman. Viscoélastodynamique monodimensionnelle avec conditions de Signorini. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 983-988. doi : 10.1016/S1631-073X(02)02399-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02399-3/

[1] L. Amerio Su un problem di vincoli unilaterali per l'equazione non omogenea delle corda vibrante, Publ. I. A. C. Serie III, Volume 109 (1976)

[2] L. Amerio On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 62 (1977) no. 2, pp. 134-142

[3] M.G. Crandall; A. Pazy Semi-groups of nonlinear contractions and dissipative sets, J. Funct. Anal., Volume 3 (1969), pp. 376-418

[4] J. Jarušek Remark to dynamic contact problems for bodies with a singular memory, Comment. Math. Univ. Carolin., Volume 39 (1998) no. 3, pp. 545-550

[5] J.U. Kim A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, Volume 14 (1989) no. 8–9, pp. 1011-1026

[6] G. Lebeau; M. Schatzman A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, Volume 53 (1984) no. 3, pp. 309-361

[7] M. Schatzman Le système différentiel (d2u/dt2)+∂ϕ(u)∋f avec conditions initiales, C. R. Acad. Sci. Paris, Série A–B, Volume 284 (1977) no. 11, p. A603-A606

  • Jeongho Ahn A generalized Duffing equation with the Coulomb's friction law and Signorini-type contact conditions, Nonlinear Analysis. Real World Applications, Volume 74 (2023), p. 25 (Id/No 103936) | DOI:10.1016/j.nonrwa.2023.103936 | Zbl:1523.74083
  • Jeongho Ahn; Zachary Rail A rod-beam system with dynamic contact and thermal exchange condition, Applied Mathematics and Computation, Volume 388 (2021), p. 25 (Id/No 125542) | DOI:10.1016/j.amc.2020.125542 | Zbl:1467.74064
  • Jiří Jarušek; Jana Stará Solvability of a rational contact model with limited interpenetration in viscoelastodynamics, Mathematics and Mechanics of Solids, Volume 23 (2018) no. 7, pp. 1040-1048 | DOI:10.1177/1081286517703262 | Zbl:1401.74218
  • Amel Atallah-Baraket; Maryem Trabelsi Analysis of the energy decay of a viscoelasticity type equation, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 24 (2016) no. 3, p. 21 | DOI:10.1515/auom-2016-0046
  • Cédric Pozzolini; Yves Renard; Michel Salaün Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 6, pp. 1585-1613 | DOI:10.1051/m2an/2015094 | Zbl:1388.74107
  • C. Pozzolini; M. Salaun Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 6, p. 1163 | DOI:10.1051/m2an/2011008
  • Adrien Petrov; Michelle Schatzman On the viscoelastodynamic problem with Signorini boundary conditions, PAMM, Volume 10 (2010) no. 1, p. 521 | DOI:10.1002/pamm.201010253
  • David E. Stewart Energy balance for viscoelastic bodies in frictionless contact, Quarterly of Applied Mathematics, Volume 67 (2009) no. 4, pp. 735-743 | DOI:10.1090/s0033-569x-09-01161-8 | Zbl:1269.74178
  • Adrien Petrov; Michelle Schatzman Mathematical Results on Existence for Viscoelastodynamic Problems with Unilateral Constraints, SIAM Journal on Mathematical Analysis, Volume 40 (2009) no. 5, p. 1882 | DOI:10.1137/070695101
  • Jeongho Ahn Thick obstacle problems with dynamic adhesive contact, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 42 (2008) no. 6, pp. 1021-1045 | DOI:10.1051/m2an:2008037 | Zbl:1149.74043
  • Jong-Shi Pang; David E. Stewart Differential variational inequalities, Mathematical Programming. Series A. Series B, Volume 113 (2008) no. 2 (A), pp. 345-424 | DOI:10.1007/s10107-006-0052-x | Zbl:1139.58011
  • David E. Stewart; Theodore J. Wendt Fractional index convolution complementarity problems, Nonlinear Analysis. Hybrid Systems, Volume 1 (2007) no. 1, pp. 124-134 | DOI:10.1016/j.nahs.2006.08.001 | Zbl:1119.90060
  • Jeongho Ahn; David E. Stewart Existence of Solutions for a Class of Impact Problems Without Viscosity, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 1, p. 37 | DOI:10.1137/s0036141004444664
  • Marius Cocou; Gilles Scarella Existence of a solution to a dynamic unilateral contact problem for a cracked viscoelastic body., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 338 (2004) no. 4, pp. 341-346 | DOI:10.1016/j.crma.2003.12.013 | Zbl:1061.74038
  • Amel Atallah-Baraket; Clotilde Fermanian Kammerer High-frequency analysis of families of solutions to the equation of viscoelasticity of Kelvin-Voigt, Journal of Hyperbolic Differential Equations, Volume 1 (2004) no. 4, pp. 780-812 | DOI:10.1142/s0219891604000299 | Zbl:1079.74014

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: