Soit α un nombre strictement positif. Le problème viscoélastique monodimensionnel
Let α be a positive number. The one-dimensional viscoelastic problem
Publié le :
Adrien Petrov 1 ; Michelle Schatzman 1
@article{CRMATH_2002__334_11_983_0,
author = {Adrien Petrov and Michelle Schatzman},
title = {Visco\'elastodynamique monodimensionnelle avec conditions de {Signorini}},
journal = {Comptes Rendus. Math\'ematique},
pages = {983--988},
year = {2002},
publisher = {Elsevier},
volume = {334},
number = {11},
doi = {10.1016/S1631-073X(02)02399-3},
language = {fr},
}
Adrien Petrov; Michelle Schatzman. Viscoélastodynamique monodimensionnelle avec conditions de Signorini. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 983-988. doi: 10.1016/S1631-073X(02)02399-3
[1] Su un problem di vincoli unilaterali per l'equazione non omogenea delle corda vibrante, Publ. I. A. C. Serie III, Volume 109 (1976)
[2] On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 62 (1977) no. 2, pp. 134-142
[3] Semi-groups of nonlinear contractions and dissipative sets, J. Funct. Anal., Volume 3 (1969), pp. 376-418
[4] Remark to dynamic contact problems for bodies with a singular memory, Comment. Math. Univ. Carolin., Volume 39 (1998) no. 3, pp. 545-550
[5] A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, Volume 14 (1989) no. 8–9, pp. 1011-1026
[6] A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, Volume 53 (1984) no. 3, pp. 309-361
[7] Le système différentiel (d2u/dt2)+∂ϕ(u)∋f avec conditions initiales, C. R. Acad. Sci. Paris, Série A–B, Volume 284 (1977) no. 11, p. A603-A606
Cité par Sources :
Commentaires - Politique
