Soit α un nombre strictement positif. Le problème viscoélastique monodimensionnel
Let α be a positive number. The one-dimensional viscoelastic problem
Publié le :
Adrien Petrov 1 ; Michelle Schatzman 1
@article{CRMATH_2002__334_11_983_0, author = {Adrien Petrov and Michelle Schatzman}, title = {Visco\'elastodynamique monodimensionnelle avec conditions de {Signorini}}, journal = {Comptes Rendus. Math\'ematique}, pages = {983--988}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02399-3}, language = {fr}, }
Adrien Petrov; Michelle Schatzman. Viscoélastodynamique monodimensionnelle avec conditions de Signorini. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 983-988. doi : 10.1016/S1631-073X(02)02399-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02399-3/
[1] Su un problem di vincoli unilaterali per l'equazione non omogenea delle corda vibrante, Publ. I. A. C. Serie III, Volume 109 (1976)
[2] On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 62 (1977) no. 2, pp. 134-142
[3] Semi-groups of nonlinear contractions and dissipative sets, J. Funct. Anal., Volume 3 (1969), pp. 376-418
[4] Remark to dynamic contact problems for bodies with a singular memory, Comment. Math. Univ. Carolin., Volume 39 (1998) no. 3, pp. 545-550
[5] A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, Volume 14 (1989) no. 8–9, pp. 1011-1026
[6] A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, Volume 53 (1984) no. 3, pp. 309-361
[7] Le système différentiel (d2u/dt2)+∂ϕ(u)∋f avec conditions initiales, C. R. Acad. Sci. Paris, Série A–B, Volume 284 (1977) no. 11, p. A603-A606
- A generalized Duffing equation with the Coulomb's friction law and Signorini-type contact conditions, Nonlinear Analysis. Real World Applications, Volume 74 (2023), p. 25 (Id/No 103936) | DOI:10.1016/j.nonrwa.2023.103936 | Zbl:1523.74083
- A rod-beam system with dynamic contact and thermal exchange condition, Applied Mathematics and Computation, Volume 388 (2021), p. 25 (Id/No 125542) | DOI:10.1016/j.amc.2020.125542 | Zbl:1467.74064
- Solvability of a rational contact model with limited interpenetration in viscoelastodynamics, Mathematics and Mechanics of Solids, Volume 23 (2018) no. 7, pp. 1040-1048 | DOI:10.1177/1081286517703262 | Zbl:1401.74218
- Analysis of the energy decay of a viscoelasticity type equation, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 24 (2016) no. 3, p. 21 | DOI:10.1515/auom-2016-0046
- Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 6, pp. 1585-1613 | DOI:10.1051/m2an/2015094 | Zbl:1388.74107
- Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 6, p. 1163 | DOI:10.1051/m2an/2011008
- On the viscoelastodynamic problem with Signorini boundary conditions, PAMM, Volume 10 (2010) no. 1, p. 521 | DOI:10.1002/pamm.201010253
- Energy balance for viscoelastic bodies in frictionless contact, Quarterly of Applied Mathematics, Volume 67 (2009) no. 4, pp. 735-743 | DOI:10.1090/s0033-569x-09-01161-8 | Zbl:1269.74178
- Mathematical Results on Existence for Viscoelastodynamic Problems with Unilateral Constraints, SIAM Journal on Mathematical Analysis, Volume 40 (2009) no. 5, p. 1882 | DOI:10.1137/070695101
- Thick obstacle problems with dynamic adhesive contact, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 42 (2008) no. 6, pp. 1021-1045 | DOI:10.1051/m2an:2008037 | Zbl:1149.74043
- Differential variational inequalities, Mathematical Programming. Series A. Series B, Volume 113 (2008) no. 2 (A), pp. 345-424 | DOI:10.1007/s10107-006-0052-x | Zbl:1139.58011
- Fractional index convolution complementarity problems, Nonlinear Analysis. Hybrid Systems, Volume 1 (2007) no. 1, pp. 124-134 | DOI:10.1016/j.nahs.2006.08.001 | Zbl:1119.90060
- Existence of Solutions for a Class of Impact Problems Without Viscosity, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 1, p. 37 | DOI:10.1137/s0036141004444664
- Existence of a solution to a dynamic unilateral contact problem for a cracked viscoelastic body., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 338 (2004) no. 4, pp. 341-346 | DOI:10.1016/j.crma.2003.12.013 | Zbl:1061.74038
- High-frequency analysis of families of solutions to the equation of viscoelasticity of Kelvin-Voigt, Journal of Hyperbolic Differential Equations, Volume 1 (2004) no. 4, pp. 780-812 | DOI:10.1142/s0219891604000299 | Zbl:1079.74014
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier