Comptes Rendus
Positive solutions for slightly super-critical elliptic equations in contractible domains
[Solutions positives pour l'équation Δu+u(n+2)/(n−2)+ε=0 en ouverts contractibles]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 459-462.

On donne des exemples d'ouverts bornés Ω, même contractibles, satisfaisant la propriété suivante : il existe k¯(Ω) tel que, pour tout kk¯(Ω), le problème P(ϵ,Ω) ci-dessous, pour ε>0 suffisamment petit, a des solutions qui pour ε→0 explosent exactement en k points. On prouve aussi que ces points convergent vers des points de Ω quand k→∞.

We give examples of bounded domains Ω, even contractible, having the following property: there exists k¯(Ω) such that, for every integer kk¯(Ω), problem P(ϵ,Ω) below, for ε>0 small enough, has at least one solution blowing up as ε→0 at exactly k points. We also prove that the blow-up points tend to some points of Ω as k→∞.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02502-5

Riccardo Molle 1 ; Donato Passaseo 2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
2 Dipartimento di Matematica “E. De Giorgi”, Università di Lecce, P.O. Box 193, 73100 Lecce, Italy
@article{CRMATH_2002__335_5_459_0,
     author = {Riccardo Molle and Donato Passaseo},
     title = {Positive solutions for slightly super-critical elliptic equations in contractible domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {459--462},
     publisher = {Elsevier},
     volume = {335},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02502-5},
     language = {en},
}
TY  - JOUR
AU  - Riccardo Molle
AU  - Donato Passaseo
TI  - Positive solutions for slightly super-critical elliptic equations in contractible domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 459
EP  - 462
VL  - 335
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02502-5
LA  - en
ID  - CRMATH_2002__335_5_459_0
ER  - 
%0 Journal Article
%A Riccardo Molle
%A Donato Passaseo
%T Positive solutions for slightly super-critical elliptic equations in contractible domains
%J Comptes Rendus. Mathématique
%D 2002
%P 459-462
%V 335
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02502-5
%G en
%F CRMATH_2002__335_5_459_0
Riccardo Molle; Donato Passaseo. Positive solutions for slightly super-critical elliptic equations in contractible domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 459-462. doi : 10.1016/S1631-073X(02)02502-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02502-5/

[1] A. Bahri; J.M. Coron On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 253-294

[2] A. Bahri; Y. Li; O. Rey On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995) no. 1, pp. 67-93

[3] H. Brezis; L.A. Peletier Asymptotics for elliptic equations involving critical growth (Colombini; Modica; Spagnolo, eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192

[4] J.M. Coron Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Série I, Volume 299 (1984) no. 7, pp. 209-212

[5] E.N. Dancer A note on an equation with critical exponent, Bull. London Math. Soc., Volume 20 (1988) no. 6, pp. 600-602

[6] M. Del Pino, P. Felmer, M. Musso, Multipeak solutions for super-critical elliptic problems in domains with small holes, Preprint

[7] W.Y. Ding Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations, Volume 2 (1989) no. 4, pp. 83-88

[8] Z.C. Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174

[9] J. Kazdan; F.W. Warner Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., Volume 28 (1975) no. 5, pp. 567-597

[10] R. Molle, D. Passaseo, (to appear)

[11] S.I. Pohožaev On the eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl., Volume 6 (1965), pp. 1408-1411

[12] D. Passaseo Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Volume 65 (1989) no. 2, pp. 147-165

[13] D. Passaseo Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., Volume 114 (1993) no. 1, pp. 97-105

[14] D. Passaseo Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., Volume 92 (1998) no. 2, pp. 429-457

[15] O. Rey The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52

  • Riccardo Molle; Donato Passaseo Nonexistence results for elliptic problems with supercritical growth in thin planar domains, NoDEA. Nonlinear Differential Equations and Applications, Volume 30 (2023) no. 5, p. 23 (Id/No 66) | DOI:10.1007/s00030-023-00875-7 | Zbl:1522.35257
  • Riccardo Molle; Donato Passaseo Nonexistence of solutions for Dirichlet problems with supercritical growth in tubular domains, Advanced Nonlinear Studies, Volume 21 (2021) no. 1, pp. 189-198 | DOI:10.1515/ans-2021-2116 | Zbl:1487.35203
  • Riccardo Molle; Donato Passaseo Uniqueness of solutions for nonlinear Dirichlet problems with supercritical growth, Topological Methods in Nonlinear Analysis, Volume 57 (2021) no. 2, pp. 535-546 | Zbl:1479.35429
  • Riccardo Molle; Donato Passaseo Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 31 (2020) no. 1, pp. 121-130 | DOI:10.4171/rlm/882 | Zbl:1437.35311
  • Teresa D'Aprile Multi-bubble solutions for a slightly supercritical elliptic problem in a domain with a small hole, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 105 (2016) no. 4, pp. 558-602 | DOI:10.1016/j.matpur.2015.11.008 | Zbl:1337.35034
  • Juanjuan Gao; Yong Zhang; Peihao Zhao Existence of positive solutions for a class of semilinear and quasilinear elliptic equations with supercritical case, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 1, pp. 215-228 | DOI:10.1016/j.jmaa.2011.04.003 | Zbl:1220.35059
  • Angela Pistoia; Tobias Weth Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 24 (2007) no. 2, pp. 325-340 | DOI:10.1016/j.anihpc.2006.03.002 | Zbl:1166.35018
  • Riccardo Molle; Donato Passaseo Concentration phenomena for solutions of superlinear elliptic problems, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 23 (2006) no. 1, pp. 63-84 | DOI:10.1016/j.anihpc.2005.02.002 | Zbl:1293.35114
  • Riccardo Molle; Donato Passaseo Multiple solutions of supercritical elliptic problems in perturbed domains, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 23 (2006) no. 3, pp. 389-405 | DOI:10.1016/j.anihpc.2005.05.003 | Zbl:1172.35020
  • Riccardo Molle; Donato Passaseo Nonlinear elliptic equations with large supercritical exponents, Calculus of Variations and Partial Differential Equations, Volume 26 (2006) no. 2, pp. 201-225 | DOI:10.1007/s00526-005-0364-3 | Zbl:1093.35022
  • Riccardo Molle; Donato Passaseo Positive solutions of slightly supercritical elliptic equations in symmetric domains, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 21 (2004) no. 5, pp. 639-656 | DOI:10.1016/j.anihpc.2003.09.004 | Zbl:1149.35353

Cité par 11 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: