[Solutions positives pour l'équation Δu+u(n+2)/(n−2)+ε=0 en ouverts contractibles]
On donne des exemples d'ouverts bornés
We give examples of bounded domains
Publié le :
Riccardo Molle 1 ; Donato Passaseo 2
@article{CRMATH_2002__335_5_459_0, author = {Riccardo Molle and Donato Passaseo}, title = {Positive solutions for slightly super-critical elliptic equations in contractible domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--462}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02502-5}, language = {en}, }
TY - JOUR AU - Riccardo Molle AU - Donato Passaseo TI - Positive solutions for slightly super-critical elliptic equations in contractible domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 459 EP - 462 VL - 335 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02502-5 LA - en ID - CRMATH_2002__335_5_459_0 ER -
Riccardo Molle; Donato Passaseo. Positive solutions for slightly super-critical elliptic equations in contractible domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 459-462. doi : 10.1016/S1631-073X(02)02502-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02502-5/
[1] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 253-294
[2] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995) no. 1, pp. 67-93
[3] Asymptotics for elliptic equations involving critical growth (Colombini; Modica; Spagnolo, eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192
[4] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Série I, Volume 299 (1984) no. 7, pp. 209-212
[5] A note on an equation with critical exponent, Bull. London Math. Soc., Volume 20 (1988) no. 6, pp. 600-602
[6] M. Del Pino, P. Felmer, M. Musso, Multipeak solutions for super-critical elliptic problems in domains with small holes, Preprint
[7] Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations, Volume 2 (1989) no. 4, pp. 83-88
[8] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174
[9] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., Volume 28 (1975) no. 5, pp. 567-597
[10] R. Molle, D. Passaseo, (to appear)
[11] On the eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl., Volume 6 (1965), pp. 1408-1411
[12] Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Volume 65 (1989) no. 2, pp. 147-165
[13] Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., Volume 114 (1993) no. 1, pp. 97-105
[14] Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., Volume 92 (1998) no. 2, pp. 429-457
[15] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52
- Nonexistence results for elliptic problems with supercritical growth in thin planar domains, NoDEA. Nonlinear Differential Equations and Applications, Volume 30 (2023) no. 5, p. 23 (Id/No 66) | DOI:10.1007/s00030-023-00875-7 | Zbl:1522.35257
- Nonexistence of solutions for Dirichlet problems with supercritical growth in tubular domains, Advanced Nonlinear Studies, Volume 21 (2021) no. 1, pp. 189-198 | DOI:10.1515/ans-2021-2116 | Zbl:1487.35203
- Uniqueness of solutions for nonlinear Dirichlet problems with supercritical growth, Topological Methods in Nonlinear Analysis, Volume 57 (2021) no. 2, pp. 535-546 | Zbl:1479.35429
- Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 31 (2020) no. 1, pp. 121-130 | DOI:10.4171/rlm/882 | Zbl:1437.35311
- Multi-bubble solutions for a slightly supercritical elliptic problem in a domain with a small hole, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 105 (2016) no. 4, pp. 558-602 | DOI:10.1016/j.matpur.2015.11.008 | Zbl:1337.35034
- Existence of positive solutions for a class of semilinear and quasilinear elliptic equations with supercritical case, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 1, pp. 215-228 | DOI:10.1016/j.jmaa.2011.04.003 | Zbl:1220.35059
- Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 24 (2007) no. 2, pp. 325-340 | DOI:10.1016/j.anihpc.2006.03.002 | Zbl:1166.35018
- Concentration phenomena for solutions of superlinear elliptic problems, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 23 (2006) no. 1, pp. 63-84 | DOI:10.1016/j.anihpc.2005.02.002 | Zbl:1293.35114
- Multiple solutions of supercritical elliptic problems in perturbed domains, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 23 (2006) no. 3, pp. 389-405 | DOI:10.1016/j.anihpc.2005.05.003 | Zbl:1172.35020
- Nonlinear elliptic equations with large supercritical exponents, Calculus of Variations and Partial Differential Equations, Volume 26 (2006) no. 2, pp. 201-225 | DOI:10.1007/s00526-005-0364-3 | Zbl:1093.35022
- Positive solutions of slightly supercritical elliptic equations in symmetric domains, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 21 (2004) no. 5, pp. 639-656 | DOI:10.1016/j.anihpc.2003.09.004 | Zbl:1149.35353
Cité par 11 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier