[Équations elliptiques non linéaire avec non-linéarité critique en ouverts presque étoilés]
On montre que, si satisfait certaines conditions, le problème (1) ci-dessous, pour ε>0 suffisamment petit et k grand, admet des solutions qui pour ε→0 se concentrent et explosent exactement en k points ; les points de concentration s'approchent du bord de quand k→∞ ; le nombre de solutions est arbitrairement grand pourvu que ε soit suffisamment petit. Parmi les ouverts bornés qui satisfont ces conditions il y en a aussi de contractibles, qui peuvent même être arbitrairement proches de ouverts étoilés.
Under suitable assumptions on , we show that, for ε>0 small and k large enough, problem (1) below has solutions which concentrate and blow-up as ε→0 at exactly k points; the blowing-up points approach as k→∞; the number of solutions tends to infinity as ε→0. These assumptions allow to be contractible and even arbitrarily close to starshaped domains.
Accepté le :
Publié le :
Riccardo Molle 1 ; Donato Passaseo 2
@article{CRMATH_2002__335_12_1029_0, author = {Riccardo Molle and Donato Passaseo}, title = {Nonlinear elliptic equations with critical {Sobolev} exponent in nearly starshaped domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {1029--1032}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02614-6}, language = {en}, }
TY - JOUR AU - Riccardo Molle AU - Donato Passaseo TI - Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 1029 EP - 1032 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02614-6 LA - en ID - CRMATH_2002__335_12_1029_0 ER -
Riccardo Molle; Donato Passaseo. Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1029-1032. doi : 10.1016/S1631-073X(02)02614-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02614-6/
[1] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 253-294
[2] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995) no. 1, pp. 67-93
[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[4] Asymptotics for elliptic equations involving critical growth (Colombini; Modica; Spagnolo, eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192
[5] A note on an equation with critical exponent, Bull. London Math. Soc., Volume 20 (1988) no. 6, pp. 600-602
[6] Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal., Volume 41 (2000) no. 5–6, pp. 745-761
[7] Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations, Volume 2 (1989) no. 4, pp. 83-88
[8] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174
[9] R. Molle, D. Passaseo, Concentrating solutions of slightly supercritical elliptic equations in symmetric domains, to appear
[10] R. Molle, D. Passaseo, to appear
[11] R. Molle, A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv. Differential Equations, to appear
[12] Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Volume 65 (1989) no. 2, pp. 147-165
[13] Multiplicity of positive solutions for the equation in noncontractible domains, Topol. Methods Nonlinear Anal., Volume 2 (1993) no. 2, pp. 343-366
[14] Some sufficient conditions for the existence of positive solutions to the equation in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996) no. 2, pp. 185-227
[15] On the eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl., Volume 6 (1965), pp. 1408-1411
[16] A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal., Volume 13 (1989) no. 10, pp. 1241-1249
[17] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52
Cité par Sources :
Commentaires - Politique