Comptes Rendus
Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452.

Let Ω be a smooth bounded domain in N . Assume fC1[0,∞) is a non-negative function such that f(u)/u is increasing on (0,∞). Let a be a real number and let b⩾0, b/0 be a continuous function such that b≡0 on Ω. We study the logistic equation Δu+au=b(x)f(u) in Ω. The special feature of this work is the uniqueness of positive solutions blowing-up on Ω, in a general setting that arises in probability theory.

Soit Ω un domaine borné et régulier de N . On suppose que fC1[0,∞) est une fonction non-negative telle que f(u)/u soit strictement croissante sur (0,+∞). Soit a un réel et b⩾0, b/0 une fonction continue sur Ω ¯. On étudie l'équation logistique Δu+au=b(x)f(u) sur Ω. Le but de cette Note est de montrer l'unicité de la solution explosant au bord de Ω dans un contexte général, qui apparaı̂t en théorie des probabilités.

Received:
Published online:
DOI: 10.1016/S1631-073X(02)02503-7
Florica-Corina Cı̂rstea 1; Vicenţiu Rădulescu 2

1 School of Communications and Informatics, Victoria University of Technology, P.O. Box 14428, Melbourne City MC, Victoria 8001, Australia
2 Department of Mathematics, University of Craiova, 1100 Craiova, Romania
@article{CRMATH_2002__335_5_447_0,
     author = {Florica-Corina C{\i}̂rstea and Vicen\c{t}iu R\u{a}dulescu},
     title = {Uniqueness of the blow-up boundary solution of logistic equations with absorbtion},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {447--452},
     publisher = {Elsevier},
     volume = {335},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02503-7},
     language = {en},
}
TY  - JOUR
AU  - Florica-Corina Cı̂rstea
AU  - Vicenţiu Rădulescu
TI  - Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 447
EP  - 452
VL  - 335
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02503-7
LA  - en
ID  - CRMATH_2002__335_5_447_0
ER  - 
%0 Journal Article
%A Florica-Corina Cı̂rstea
%A Vicenţiu Rădulescu
%T Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
%J Comptes Rendus. Mathématique
%D 2002
%P 447-452
%V 335
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02503-7
%G en
%F CRMATH_2002__335_5_447_0
Florica-Corina Cı̂rstea; Vicenţiu Rădulescu. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452. doi : 10.1016/S1631-073X(02)02503-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02503-7/

[1] S. Alama; G. Tarantello On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., Volume 221 (1996), pp. 467-493

[2] C. Bandle; M. Marcus ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., Volume 58 (1992), pp. 9-24

[3] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press

[4] F. Cı̂rstea; V. Rădulescu Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math., Volume 4 (2002), pp. 559-586

[5] Y. Du; Q. Huang Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., Volume 31 (1999), pp. 1-18

[6] J. Garcı́a-Melián; R. Letelier-Albornoz; J. Sabina de Lis Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602

[7] J.B. Keller On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[8] C. Loewner; L. Nirenberg Partial differential equations invariant under conformal or projective transformations (L. Alhfors, ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272

[9] M. Marcus; L. Véron Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274

[10] R. Osserman On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[11] E. Seneta Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, Heidelberg, 1976

[12] L. Véron Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., Volume 59 (1992), pp. 231-250

Cited by Sources:

The research of F. Cı̂rstea was done under the IPRS Programme funded by the Australian Government through DETYA. V. Rădulescu was supported by the P.I.C.S. Research Programme between France and Romania.

Comments - Policy


Articles of potential interest

Asymptotics for the blow-up boundary solution of the logistic equation with absorption

Florica-Corina Cîrstea; Vicenţiu Rădulescu

C. R. Math (2003)


An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up

Florica-Corina Cîrstea

C. R. Math (2004)


Extremal singular solutions for degenerate logistic-type equations in anisotropic media

Florica-Corina Cîrstea; Vicenţiu Rădulescu

C. R. Math (2004)