[Sur une classe de systèmes locaux associés aux courbes planes]
On étudie une classe de systèmes locaux sur le complément d'un germe de courbe irréductible plane. On présente des systèmes locaux qui par [8] correspondent à des -modules holonomes réguliers dont la variété caractéristique est l'union de la section nulle avec le conormal de la courbe.
We study a class of local systems on the complement of a germ of irreducible plane curve. We exhibit local systems which by [8] give rise to regular holonomic -modules with characteristic variety the union of the zero section with the conormal of the curve.
Révisé le :
Publié le :
Pedro C. Silva 1
@article{CRMATH_2002__335_5_421_0, author = {Pedro C. Silva}, title = {On a class of local systems associated to plane curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--426}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02516-5}, language = {en}, }
Pedro C. Silva. On a class of local systems associated to plane curves. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 421-426. doi : 10.1016/S1631-073X(02)02516-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02516-5/
[1] A. Dimca, A. Némethi, On the monodromy of complex polynomials, | arXiv
[2] Braid group representations of low degree, Proc. London Math. Soc., Volume 73 (1996) no. 3, pp. 279-322
[3] -Modules et faisceaux pervers dont le support singulier est un croisement normal, Ann. Inst. Fourier, Volume 35 (1985), pp. 1-48
[4] The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365
[5] Global Analysis in Linear Differential Equations, Kluwer Academic, 1999
[6] Une équivalence de catégories, Comput. Math., Volume 51 (1984), pp. 51-62
[7] Une autre équivalence de catégories, Comput. Math., Volume 51 (1984), pp. 63-88
[8] A microlocal Riemann–Hilbert correspondence, Comput. Math., Volume 127 (2001), pp. 229-241
[9] Holonomic Systems with solutions ramified along a cusp, C. R. Acad. Sci. Paris, Série I, Volume 335 (2002), pp. 171-176
[10] On the topology of algebroid singularities, Amer. J. Math., Volume 54 (1932), pp. 453-465
Cité par Sources :
Commentaires - Politique