Comptes Rendus
On a class of local systems associated to plane curves
Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 421-426.

We study a class of local systems on the complement of a germ of irreducible plane curve. We exhibit local systems which by [8] give rise to regular holonomic 𝒟-modules with characteristic variety the union of the zero section with the conormal of the curve.

On étudie une classe de systèmes locaux sur le complément d'un germe de courbe irréductible plane. On présente des systèmes locaux qui par [8] correspondent à des 𝒟-modules holonomes réguliers dont la variété caractéristique est l'union de la section nulle avec le conormal de la courbe.

Received:
Revised:
Published online:
DOI: 10.1016/S1631-073X(02)02516-5

Pedro C. Silva 1

1 CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2002__335_5_421_0,
     author = {Pedro C. Silva},
     title = {On a class of local systems associated to plane curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--426},
     publisher = {Elsevier},
     volume = {335},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02516-5},
     language = {en},
}
TY  - JOUR
AU  - Pedro C. Silva
TI  - On a class of local systems associated to plane curves
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 421
EP  - 426
VL  - 335
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02516-5
LA  - en
ID  - CRMATH_2002__335_5_421_0
ER  - 
%0 Journal Article
%A Pedro C. Silva
%T On a class of local systems associated to plane curves
%J Comptes Rendus. Mathématique
%D 2002
%P 421-426
%V 335
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02516-5
%G en
%F CRMATH_2002__335_5_421_0
Pedro C. Silva. On a class of local systems associated to plane curves. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 421-426. doi : 10.1016/S1631-073X(02)02516-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02516-5/

[1] A. Dimca, A. Némethi, On the monodromy of complex polynomials, | arXiv

[2] E. Formanek Braid group representations of low degree, Proc. London Math. Soc., Volume 73 (1996) no. 3, pp. 279-322

[3] A. Galligo; M. Granger; Ph. Maisonobe 𝒟-Modules et faisceaux pervers dont le support singulier est un croisement normal, Ann. Inst. Fourier, Volume 35 (1985), pp. 1-48

[4] M. Kashiwara The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365

[5] M. Kohno Global Analysis in Linear Differential Equations, Kluwer Academic, 1999

[6] Z. Mebkhout Une équivalence de catégories, Comput. Math., Volume 51 (1984), pp. 51-62

[7] Z. Mebkhout Une autre équivalence de catégories, Comput. Math., Volume 51 (1984), pp. 63-88

[8] O. Neto A microlocal Riemann–Hilbert correspondence, Comput. Math., Volume 127 (2001), pp. 229-241

[9] O. Neto; P.C. Silva Holonomic Systems with solutions ramified along a cusp, C. R. Acad. Sci. Paris, Série I, Volume 335 (2002), pp. 171-176

[10] O. Zariski On the topology of algebroid singularities, Amer. J. Math., Volume 54 (1932), pp. 453-465

Cited by Sources:

Comments - Policy