Comptes Rendus
Hypercyclic semigroups and somewhere dense orbits
[Semigroupes hypercycliques et orbites quelque part denses]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 895-898.

Nous étudions l'hypercyclicité des semigroupes linéaires et fortement continus. En ce qui concerne l'iteration d'un opérateur, Bourdon et Feldman ont montré que l'existence des orbites quelque part denses implique hypercyclicité. Nous démontrons le resultat correspondant pour des semigroupes. Une conséquence est la generalisation d'une conjecture de Herrero à des semigroupes.

We study hypercyclicity of linear strongly continuous semigroups. In the case of iterations of a single operator Bourdon and Feldman have recently proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for semigroups. As a consequence, a conjecture of Herrero concerning iterations of a single operator also holds for strongly continuous semigroups.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02572-4

George Costakis 1 ; Alfredo Peris 2

1 Department of Mathematics, University of Maryland, College Park, MA 20742, USA
2 Departamento de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Valencia, 46071 Valencia, Spain
@article{CRMATH_2002__335_11_895_0,
     author = {George Costakis and Alfredo Peris},
     title = {Hypercyclic semigroups and somewhere dense orbits},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {895--898},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02572-4},
     language = {en},
}
TY  - JOUR
AU  - George Costakis
AU  - Alfredo Peris
TI  - Hypercyclic semigroups and somewhere dense orbits
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 895
EP  - 898
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02572-4
LA  - en
ID  - CRMATH_2002__335_11_895_0
ER  - 
%0 Journal Article
%A George Costakis
%A Alfredo Peris
%T Hypercyclic semigroups and somewhere dense orbits
%J Comptes Rendus. Mathématique
%D 2002
%P 895-898
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02572-4
%G en
%F CRMATH_2002__335_11_895_0
George Costakis; Alfredo Peris. Hypercyclic semigroups and somewhere dense orbits. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 895-898. doi : 10.1016/S1631-073X(02)02572-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02572-4/

[1] P.S. Bourdon Invariant manifolds of hypercyclic vestors, Proc. Amer. Math. Soc, Volume 118 (1993), pp. 845-847

[2] P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., to appear

[3] G. Costakis On a conjecture of D. Herrero concerning hypercyclic operators, C. R. Acad. Sci. Paris, Serie I, Volume 330 (2000), pp. 179-182

[4] W. Desch; W. Schappacher; G.F. Webb Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 793-819

[5] D.A. Herrero Hypercyclic operators and chaos, J. Operator Theory, Volume 28 (1992), pp. 93-103

[6] V.G. Miller Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory, Volume 29 (1997), pp. 110-115

[7] A. Peris Multi-hypercyclic operators are hypercyclic, Math. Z, Volume 236 (2001), pp. 779-786

Cité par Sources :

Commentaires - Politique