[Semigroupes hypercycliques et orbites quelque part denses]
We study hypercyclicity of linear strongly continuous semigroups. In the case of iterations of a single operator Bourdon and Feldman have recently proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for semigroups. As a consequence, a conjecture of Herrero concerning iterations of a single operator also holds for strongly continuous semigroups.
Nous étudions l'hypercyclicité des semigroupes linéaires et fortement continus. En ce qui concerne l'iteration d'un opérateur, Bourdon et Feldman ont montré que l'existence des orbites quelque part denses implique hypercyclicité. Nous démontrons le resultat correspondant pour des semigroupes. Une conséquence est la generalisation d'une conjecture de Herrero à des semigroupes.
Accepté le :
Publié le :
George Costakis 1 ; Alfredo Peris 2
@article{CRMATH_2002__335_11_895_0, author = {George Costakis and Alfredo Peris}, title = {Hypercyclic semigroups and somewhere dense orbits}, journal = {Comptes Rendus. Math\'ematique}, pages = {895--898}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02572-4}, language = {en}, }
George Costakis; Alfredo Peris. Hypercyclic semigroups and somewhere dense orbits. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 895-898. doi : 10.1016/S1631-073X(02)02572-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02572-4/
[1] Invariant manifolds of hypercyclic vestors, Proc. Amer. Math. Soc, Volume 118 (1993), pp. 845-847
[2] P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., to appear
[3] On a conjecture of D. Herrero concerning hypercyclic operators, C. R. Acad. Sci. Paris, Serie I, Volume 330 (2000), pp. 179-182
[4] Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 793-819
[5] Hypercyclic operators and chaos, J. Operator Theory, Volume 28 (1992), pp. 93-103
[6] Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory, Volume 29 (1997), pp. 110-115
[7] Multi-hypercyclic operators are hypercyclic, Math. Z, Volume 236 (2001), pp. 779-786
- Hypercyclic tuples of matrices on
, Electronic Journal of Mathematical Analysis and Applications EJMAA, Volume 9 (2021) no. 2, pp. 1-11 | Zbl:1522.47024 - On the recurrent
-semigroups, their existence, and some criteria, Journal of Mathematics, Volume 2021 (2021), p. 7 (Id/No 6756908) | DOI:10.1155/2021/6756908 | Zbl:1515.47061 - Some criteria for subspace-hypercyclicity of
-semigroups, The Australian Journal of Mathematical Analysis and Applications, Volume 18 (2021) no. 1, p. 8 (Id/No 12) | Zbl:1474.47027 - On some properties of
-class operators, Communications of the Korean Mathematical Society, Volume 34 (2019) no. 1, pp. 145-154 | DOI:10.4134/ckms.c170178 | Zbl:7123472 -
-supercyclicity for strongly continuous semigroups, Complex Analysis and Operator Theory, Volume 13 (2019) no. 8, pp. 3923-3942 | DOI:10.1007/s11785-019-00941-y | Zbl:1494.47076 - Somewhere dense orbit that is not dense on a complex Hilbert space, Concrete Operators, Volume 6 (2019), pp. 58-63 | DOI:10.1515/conop-2019-0005 | Zbl:7119975
- Supercyclic
-semigroups, stability and somewhere dense orbits, Journal of Mathematical Analysis and Applications, Volume 476 (2019) no. 2, pp. 539-548 | DOI:10.1016/j.jmaa.2019.03.067 | Zbl:7053224 - The specification property for
-semigroups, Mediterranean Journal of Mathematics, Volume 16 (2019) no. 3, p. 12 (Id/No 80) | DOI:10.1007/s00009-019-1353-7 | Zbl:1499.47020 - Linear dynamics of semigroups generated by differential operators, Open Mathematics, Volume 15 (2017), pp. 745-767 | DOI:10.1515/math-2017-0065 | Zbl:1382.47002
-
-supercyclicity, Journal of Functional Analysis, Volume 270 (2016) no. 12, pp. 4443-4465 | DOI:10.1016/j.jfa.2016.03.005 | Zbl:1357.47011 - Bibliography, Abstract Volterra Integro-Differential Equations (2015), p. 431 | DOI:10.1201/b18463-6
- Mixing properties for nonautonomous linear dynamics and invariant sets, Applied Mathematics Letters, Volume 26 (2013) no. 2, p. 215 | DOI:10.1016/j.aml.2012.08.014
- Subsemigroups of transitive semigroups, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 3, pp. 1043-1071 | DOI:10.1017/s0143385711000113 | Zbl:1287.54035
- Spectral characterization of weak topological transitivity, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 105 (2011) no. 2, pp. 403-414 | DOI:10.1007/s13398-011-0023-9 | Zbl:1266.47015
- Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators, Journal of Mathematical Analysis and Applications, Volume 365 (2010) no. 1, pp. 363-375 | DOI:10.1016/j.jmaa.2009.10.063 | Zbl:1196.47033
- Topologically transitive semigroup actions of real linear fractional transformations, Journal of Mathematical Analysis and Applications, Volume 368 (2010) no. 2, pp. 587-603 | DOI:10.1016/j.jmaa.2010.03.028 | Zbl:1193.47016
- Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators, Mediterranean Journal of Mathematics, Volume 7 (2010) no. 1, pp. 101-109 | DOI:10.1007/s00009-010-0030-7 | Zbl:1215.47012
- Hypercyclic
-semigroups and evolution families generated by first order differential operators, Proceedings of the American Mathematical Society, Volume 137 (2009) no. 11, pp. 3833-3848 | DOI:10.1090/s0002-9939-09-09955-9 | Zbl:1187.47034 - Hypercyclic behaviour of operators in a hypercyclic
-semigroup, Journal of Functional Analysis, Volume 244 (2007) no. 1, pp. 342-348 | DOI:10.1016/j.jfa.2006.12.008 | Zbl:1123.47010 - Chaos for semigroups of unbounded operators, Mathematische Nachrichten, Volume 261-262 (2003) no. 1, p. 47 | DOI:10.1002/mana.200310112
Cité par 20 documents. Sources : Crossref, zbMATH
Commentaires - Politique