Comptes Rendus
Hypercyclic semigroups and somewhere dense orbits
[Semigroupes hypercycliques et orbites quelque part denses]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 895-898.

We study hypercyclicity of linear strongly continuous semigroups. In the case of iterations of a single operator Bourdon and Feldman have recently proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for semigroups. As a consequence, a conjecture of Herrero concerning iterations of a single operator also holds for strongly continuous semigroups.

Nous étudions l'hypercyclicité des semigroupes linéaires et fortement continus. En ce qui concerne l'iteration d'un opérateur, Bourdon et Feldman ont montré que l'existence des orbites quelque part denses implique hypercyclicité. Nous démontrons le resultat correspondant pour des semigroupes. Une conséquence est la generalisation d'une conjecture de Herrero à des semigroupes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02572-4

George Costakis 1 ; Alfredo Peris 2

1 Department of Mathematics, University of Maryland, College Park, MA 20742, USA
2 Departamento de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Valencia, 46071 Valencia, Spain
@article{CRMATH_2002__335_11_895_0,
     author = {George Costakis and Alfredo Peris},
     title = {Hypercyclic semigroups and somewhere dense orbits},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {895--898},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02572-4},
     language = {en},
}
TY  - JOUR
AU  - George Costakis
AU  - Alfredo Peris
TI  - Hypercyclic semigroups and somewhere dense orbits
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 895
EP  - 898
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02572-4
LA  - en
ID  - CRMATH_2002__335_11_895_0
ER  - 
%0 Journal Article
%A George Costakis
%A Alfredo Peris
%T Hypercyclic semigroups and somewhere dense orbits
%J Comptes Rendus. Mathématique
%D 2002
%P 895-898
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02572-4
%G en
%F CRMATH_2002__335_11_895_0
George Costakis; Alfredo Peris. Hypercyclic semigroups and somewhere dense orbits. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 895-898. doi : 10.1016/S1631-073X(02)02572-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02572-4/

[1] P.S. Bourdon Invariant manifolds of hypercyclic vestors, Proc. Amer. Math. Soc, Volume 118 (1993), pp. 845-847

[2] P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., to appear

[3] G. Costakis On a conjecture of D. Herrero concerning hypercyclic operators, C. R. Acad. Sci. Paris, Serie I, Volume 330 (2000), pp. 179-182

[4] W. Desch; W. Schappacher; G.F. Webb Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 793-819

[5] D.A. Herrero Hypercyclic operators and chaos, J. Operator Theory, Volume 28 (1992), pp. 93-103

[6] V.G. Miller Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory, Volume 29 (1997), pp. 110-115

[7] A. Peris Multi-hypercyclic operators are hypercyclic, Math. Z, Volume 236 (2001), pp. 779-786

  • Neema Wilberth; Santosh Kumar; Marco Mpimbo Hypercyclic tuples of matrices on Cn, Electronic Journal of Mathematical Analysis and Applications EJMAA, Volume 9 (2021) no. 2, pp. 1-11 | Zbl:1522.47024
  • Mansooreh Moosapoor On the recurrent C0-semigroups, their existence, and some criteria, Journal of Mathematics, Volume 2021 (2021), p. 7 (Id/No 6756908) | DOI:10.1155/2021/6756908 | Zbl:1515.47061
  • Mansooreh Moosapoor Some criteria for subspace-hypercyclicity of C0-semigroups, The Australian Journal of Mathematical Analysis and Applications, Volume 18 (2021) no. 1, p. 8 (Id/No 12) | Zbl:1474.47027
  • Meysam Asadipour; Bahmann Yousefi On some properties of J-class operators, Communications of the Korean Mathematical Society, Volume 34 (2019) no. 1, pp. 145-154 | DOI:10.4134/ckms.c170178 | Zbl:7123472
  • Arafat Abbar Γ-supercyclicity for strongly continuous semigroups, Complex Analysis and Operator Theory, Volume 13 (2019) no. 8, pp. 3923-3942 | DOI:10.1007/s11785-019-00941-y | Zbl:1494.47076
  • Neema Wilberth; Marco Mpimbo; Santosh Kumar Somewhere dense orbit that is not dense on a complex Hilbert space, Concrete Operators, Volume 6 (2019), pp. 58-63 | DOI:10.1515/conop-2019-0005 | Zbl:7119975
  • Abhay Kumar; Sachi Srivastava Supercyclic C0-semigroups, stability and somewhere dense orbits, Journal of Mathematical Analysis and Applications, Volume 476 (2019) no. 2, pp. 539-548 | DOI:10.1016/j.jmaa.2019.03.067 | Zbl:7053224
  • S. Bartoll; F. Martínez-Giménez; A. Peris; F. Rodenas The specification property for C0-semigroups, Mediterranean Journal of Mathematics, Volume 16 (2019) no. 3, p. 12 (Id/No 80) | DOI:10.1007/s00009-019-1353-7 | Zbl:1499.47020
  • J. Alberto Conejero; Carlos Lizama; Marina Murillo-Arcila; Alfredo Peris Linear dynamics of semigroups generated by differential operators, Open Mathematics, Volume 15 (2017), pp. 745-767 | DOI:10.1515/math-2017-0065 | Zbl:1382.47002
  • S. Charpentier; R. Ernst; Q. Menet Γ-supercyclicity, Journal of Functional Analysis, Volume 270 (2016) no. 12, pp. 4443-4465 | DOI:10.1016/j.jfa.2016.03.005 | Zbl:1357.47011
  • Bibliography, Abstract Volterra Integro-Differential Equations (2015), p. 431 | DOI:10.1201/b18463-6
  • M. Murillo-Arcila; A. Peris Mixing properties for nonautonomous linear dynamics and invariant sets, Applied Mathematics Letters, Volume 26 (2013) no. 2, p. 215 | DOI:10.1016/j.aml.2012.08.014
  • Étienne Matheron Subsemigroups of transitive semigroups, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 3, pp. 1043-1071 | DOI:10.1017/s0143385711000113 | Zbl:1287.54035
  • Wolfgang Desch; Wilhelm Schappacher Spectral characterization of weak topological transitivity, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 105 (2011) no. 2, pp. 403-414 | DOI:10.1007/s13398-011-0023-9 | Zbl:1266.47015
  • T. Kalmes Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators, Journal of Mathematical Analysis and Applications, Volume 365 (2010) no. 1, pp. 363-375 | DOI:10.1016/j.jmaa.2009.10.063 | Zbl:1196.47033
  • Mohammad Javaheri Topologically transitive semigroup actions of real linear fractional transformations, Journal of Mathematical Analysis and Applications, Volume 368 (2010) no. 2, pp. 587-603 | DOI:10.1016/j.jmaa.2010.03.028 | Zbl:1193.47016
  • José A. Conejero; Elisabetta M. Mangino Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators, Mediterranean Journal of Mathematics, Volume 7 (2010) no. 1, pp. 101-109 | DOI:10.1007/s00009-010-0030-7 | Zbl:1215.47012
  • T. Kalmes Hypercyclic C0-semigroups and evolution families generated by first order differential operators, Proceedings of the American Mathematical Society, Volume 137 (2009) no. 11, pp. 3833-3848 | DOI:10.1090/s0002-9939-09-09955-9 | Zbl:1187.47034
  • Jose A. Conejero; V. Müller; A. Peris Hypercyclic behaviour of operators in a hypercyclic C0-semigroup, Journal of Functional Analysis, Volume 244 (2007) no. 1, pp. 342-348 | DOI:10.1016/j.jfa.2006.12.008 | Zbl:1123.47010
  • R. deLaubenfels; H. Emamirad; K.‐G. Grosse‐Erdmann Chaos for semigroups of unbounded operators, Mathematische Nachrichten, Volume 261-262 (2003) no. 1, p. 47 | DOI:10.1002/mana.200310112

Cité par 20 documents. Sources : Crossref, zbMATH

Commentaires - Politique