[La formule d'entropie de Pesin C1-générique]
The metric entropy of a C2-diffeomorphism with respect to an invariant smooth measure μ is equal to the average of the sum of the positive Lyapunov exponents of μ. This is the celebrated Pesin's entropy formula, hμ(f)=∫M∑λi>0λi. The C2 regularity (or C1+α) of diffeomorphism is essential to the proof of this equality. We show that at least in the two dimensional case this equality is satisfied for a C1-generic diffeomorphism and in particular we obtain a set of volume preserving diffeomorphisms strictly larger than those which are C1+α where Pesin's formula holds.
L'entropie métrique d'un difféomorphisme C2, par rapport à une mesure invariante est égale à la moyenne de la somme des exposants de Lyapunov positifs. Ceci est la célèbre formule d'entropie de Pesin. La régularité du difféomorphisme est essentielle pour la preuve de cette égalité. Nous montrons que en dimension deux, cette égalité est satisfaite pour un difféomorphisme C1-générique et montrons qu'en particulier nous obtenons un ensemble de difféomorphismes conservatifs contenant strictement ceux qui sont C1+α , où la formule de Pesin est satisfaite.
Accepté le :
Publié le :
Ali Tahzibi 1
@article{CRMATH_2002__335_12_1057_0, author = {Ali Tahzibi}, title = {$ \mathrm{C}^{\mathrm{1}}$-generic {Pesin's} entropy formula}, journal = {Comptes Rendus. Math\'ematique}, pages = {1057--1062}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02609-2}, language = {en}, }
Ali Tahzibi. $ \mathrm{C}^{\mathrm{1}}$-generic Pesin's entropy formula. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1057-1062. doi : 10.1016/S1631-073X(02)02609-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02609-2/
[1] J. Bochi, Genericity of zero lyapunov exponents, Preprint, IMPA, 2001
[2] Topology, Vol. 1, Academic Press, 1966
[3] The metric entropy of diffeomorphisms. I. characterization of measures satisfying Pesin's entropy formula, Ann. of Math., Volume 122 (1985), pp. 509-539
[4] A note on smoothing symplectic and volume preserving diffeomorphims, Lecture Notes in Math., 597, Springer-Verlag, 1977, pp. 828-854
- Lyapunov exponents and entropy for divergence-free Lipschitz vector fields, European Journal of Mathematics, Volume 9 (2023) no. 2 | DOI:10.1007/s40879-023-00611-6
- Lower bound in Pesin formula of C 1 interval maps*, Nonlinearity, Volume 35 (2022) no. 3, p. 1249 | DOI:10.1088/1361-6544/ac4b3d
- Unstable entropy in smooth ergodic theory *, Nonlinearity, Volume 34 (2021) no. 8, p. R75 | DOI:10.1088/1361-6544/abd7c7
- Pesin’s entropy formula for
C 1 non-uniformly expanding maps, Mathematische Zeitschrift, Volume 291 (2019) no. 3-4, p. 1451 | DOI:10.1007/s00209-019-02237-5 - A new criterion of physical measures for partially hyperbolic diffeomorphisms, Transactions of the American Mathematical Society, Volume 373 (2019) no. 1, p. 385 | DOI:10.1090/tran/7920
- Stretching Generic Pesin’s Entropy Formula, Journal of Statistical Physics, Volume 173 (2018) no. 5, p. 1523 | DOI:10.1007/s10955-018-2163-1
- On Pesin's entropy formula for dominated splittings without mixed behavior, Journal of Differential Equations, Volume 261 (2016) no. 7, p. 3964 | DOI:10.1016/j.jde.2016.06.012
- (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms, Journal of Mathematical Analysis and Applications, Volume 434 (2016) no. 2, p. 1123 | DOI:10.1016/j.jmaa.2015.09.042
- Diffeomorphisms with positive metric entropy, Publications mathématiques de l'IHÉS, Volume 124 (2016) no. 1, p. 319 | DOI:10.1007/s10240-016-0086-4
- The Pesin entropy formula for diffeomorphisms with dominated splitting, Ergodic Theory and Dynamical Systems, Volume 35 (2015) no. 3, p. 737 | DOI:10.1017/etds.2013.93
- Generic continuity of metric entropy for volume-preserving diffeomorphisms, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 1, p. 364 | DOI:10.1016/j.jmaa.2014.12.032
- Dominated splitting and Pesin's entropy formula, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 4, p. 1421 | DOI:10.3934/dcds.2012.32.1421
- On the Entropy of Conservative Flows, Qualitative Theory of Dynamical Systems, Volume 10 (2011) no. 1, p. 11 | DOI:10.1007/s12346-010-0033-6
- Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics, Volume 1 (2006), p. 57 | DOI:10.1016/s1874-575x(06)80027-5
Cité par 14 documents. Sources : Crossref
Commentaires - Politique