[Type de Hodge de la cohomologie exotique des intersections complètes]
Si est une intersection complète lisse, sa cohomologie modulo celle de est supportée en dimension moitié. Si l'intersection complète est singulière, elle peut aussi avoir de la cohomologie exotique en dimension supérieure. Nous montrons qu' on peut améliorer le type de Hodge de cette cohomologie de de Rham exotique.
If is a smooth complete intersection, its cohomology modulo the one of is supported in middle dimension. If the complete intersection is singular, it might also carry exotic cohomology beyond the middle dimension. We show that for this exotic cohomology, one can improve the known bound for the Hodge type of its de Rham cohomology.
Accepté le :
Publié le :
Hélène Esnault 1 ; Daqing Wan 2
@article{CRMATH_2003__336_2_153_0, author = {H\'el\`ene Esnault and Daqing Wan}, title = {Hodge type of the exotic cohomology of complete intersections}, journal = {Comptes Rendus. Math\'ematique}, pages = {153--157}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00013-X}, language = {en}, }
Hélène Esnault; Daqing Wan. Hodge type of the exotic cohomology of complete intersections. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 153-157. doi : 10.1016/S1631-073X(03)00013-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00013-X/
[1] Cohomologie des intersections complètes, SGA 7 XI, Lect. Notes in Math., 340, Springer, Berlin, 1973, pp. 39-61
[2] Théorie de Hodge II, Publ. Math. IHES, Volume 40 (1972), pp. 5-57
[3] Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singulières, Ann. Sci. École Norm. Sup. (4), Volume 23 (1990), pp. 645-656
[4] On the rationality of the zeta function of an algebraic variety, Amer. J. Math., Volume 82 (1960), pp. 631-648
[5] Hodge type of subvarieties of of small degrees, Math. Ann., Volume 288 (1990) no. 3, pp. 549-551
[6] Hodge type of projective varieties of low degree, Math. Ann., Volume 293 (1992) no. 1, pp. 1-6
[7] On a theorem of Ax, Amer. J. Math., Volume 93 (1971), pp. 485-499
[8] Poles of zeta functions of complete intersections, Chinese Ann. Math., Volume 21B (2000) no. 2, pp. 187-200
Cité par Sources :
☆ The first author is supported by the DFG-Schwerpunkt “Komplexe Mannigfaltigkeiten” while the second author is partially supported by the NSF.
Commentaires - Politique