Comptes Rendus
Number Theory
Triviality of X split (N)() for certain congruence classes of N
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 377-380.

We give a criterion to check if, given a prime number N, the only rational points of the modular curve Xsplit(N) are trivial (i.e., cusps or points furnished by complex multiplication). We then prove that this criterion is verified for large enough N satisfying some explicit congruences.

Soit N un nombre premier. On donne un critère permettant de vérifier si les points rationnels de la courbe modulaire Xsplit(N) sont triviaux (c'est-à-dire des pointes ou des points fournis par la multiplication complexe). On montre ensuite que ce critère est satisfait si N est assez grand et vérifie certaines congruences explicites.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00078-5

Pierre Parent 1

1 A2X, U.F.R de mathématiques et d'informatique, Université de Bordeaux I, 351, cours de la libération, 33405 Talence cedex, France
@article{CRMATH_2003__336_5_377_0,
     author = {Pierre Parent},
     title = {Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes {of~\protect\emph{N}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {377--380},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00078-5},
     language = {en},
}
TY  - JOUR
AU  - Pierre Parent
TI  - Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 377
EP  - 380
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00078-5
LA  - en
ID  - CRMATH_2003__336_5_377_0
ER  - 
%0 Journal Article
%A Pierre Parent
%T Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N
%J Comptes Rendus. Mathématique
%D 2003
%P 377-380
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00078-5
%G en
%F CRMATH_2003__336_5_377_0
Pierre Parent. Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 377-380. doi : 10.1016/S1631-073X(03)00078-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00078-5/

[1] M. Bertolini; H. Darmon A rigid Gross–Zagier formula and arithmetic applications, Ann. of Math. (2), Volume 146 (1997), pp. 111-147 (With an appendix by B. Edixhoven)

[2] B. Gross Heights and the special values of L-series, Canadian Math. Soc. Conference Proceedings, Vol. 7, American Mathematical Society, Providence, RI, 1987, pp. 115-187

[3] V.A. Kolyvagin; D.Yu. Logachev Finiteness of the Shafarevich–Tate group and the group of rational points for some modular Abelian varieties, Leningrad Math. J., Volume 1 (1990) no. 5

[4] B. Mazur Rational isogenies of prime degree, Invent. Math., Volume 44 (1978), pp. 129-162

[5] L. Merel Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996), pp. 437-449

[6] L. Merel Sur la nature non-cyclotomique des points d'ordre fini des courbes elliptiques, avec un appendice de E. Kowalski et Ph. Michel, Duke Math. J., Volume 110 (2001) no. 1, pp. 81-119

[7] L. Merel; W.A. Stein The field generated by the points of small prime order on an elliptic curve, Internat. Math. Res. Notices, Volume 20 (2001), pp. 1075-1082

[8] J.-F. Mestre La méthode des graphes : exemples et applications, Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, Katata, 1986, Nagoya University, Nagoya, 1986, pp. 217-242

[9] J.-F. Mestre, J. Oesterlé, Courbes elliptiques de conducteur premier, Manuscript

[10] F. Momose Rational points on the modular curves Xsplit(p), Compositio Math., Volume 52 (1984), pp. 115-137

[11] J.-P. Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331

[12] V. Vatsal Uniform disribution on Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46

Cited by Sources:

Comments - Policy