Comptes Rendus
Number Theory
Integral j-invariants and Cartan structures for elliptic curves
[Invariants j entiers et structures de Cartan de courbes elliptiques]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 599-602.

On borne l'invariant j des points entiers des courbes modulaires, en fonction du groupe de congruence définissant la courbe. Sous l'hypothèse de Riemann généralisée, on en déduit que, si p est un nombre premier suffisamment grand, la courbe modulaire Xsplit(p5) n'a pas de point rationnel non trivial.

We bound the j-invariant of integral points on a modular curve in terms of the congruence group defining the curve. We apply this to prove that, under the GRH, the modular curve Xsplit(p5) has no non-trivial rational point if p is a sufficiently large prime number.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.04.002

Yu. Bilu 1 ; Pierre Parent 1

1 Institut de mathématiques de Bordeaux, 351, cours de la Libération, 33405 Talence cedex, France
@article{CRMATH_2008__346_11-12_599_0,
     author = {Yu. Bilu and Pierre Parent},
     title = {Integral \protect\emph{j}-invariants and {Cartan} structures for elliptic curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {599--602},
     publisher = {Elsevier},
     volume = {346},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crma.2008.04.002},
     language = {en},
}
TY  - JOUR
AU  - Yu. Bilu
AU  - Pierre Parent
TI  - Integral j-invariants and Cartan structures for elliptic curves
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 599
EP  - 602
VL  - 346
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2008.04.002
LA  - en
ID  - CRMATH_2008__346_11-12_599_0
ER  - 
%0 Journal Article
%A Yu. Bilu
%A Pierre Parent
%T Integral j-invariants and Cartan structures for elliptic curves
%J Comptes Rendus. Mathématique
%D 2008
%P 599-602
%V 346
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2008.04.002
%G en
%F CRMATH_2008__346_11-12_599_0
Yu. Bilu; Pierre Parent. Integral j-invariants and Cartan structures for elliptic curves. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 599-602. doi : 10.1016/j.crma.2008.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.002/

[1] Yu. Bilu, P. Parent, Explicit bounds for integral j-invariants and level of Cartan structures for elliptic curves, in preparation

[2] E. Bombieri On Weil's “théorème de décomposition”, Amer. J. Math., Volume 105 (1983), pp. 295-308

[3] E. Halberstadt; A. Kraus Sur les modules de torsion des courbes elliptiques, Math. Ann., Volume 310 (1998), pp. 47-54

[4] D.S. Kubert; S. Lang Modular Units, Grundlehren der Mathematischen Wissenschaften, vol. 244, Springer-Verlag, New York-Berlin, 1981 (xiii+358 pp)

[5] D.W. Masser; G. Wüstholz Galois properties of division fields of elliptic curves, Bull. London Math. Soc., Volume 25 (1993), pp. 247-254

[6] L. Merel, Normalizers of split Cartan subgroups and supersingular elliptic curves, in: Proceedings of the conference, Diophantine Geometry, Pisa, 2005

[7] F. Pellarin Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques, Acta Arith., Volume 100 (2001), pp. 203-243

[8] J.-P. Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331

[9] J.-P. Serre Quelques applications du théorème de densité de Chebotarev, Publ. Math. IHES, Volume 54 (1981), pp. 323-401

[10] G. Shimura Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, vol. 11, Iwanami Shoten, Tokyo, 1971 (Princeton University Press, Princeton, NJ)

Cité par Sources :

Commentaires - Politique