Comptes Rendus
Harmonic Analysis/Mathematical Analysis
A null series with small anti-analytic part
Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 475-478.

We show that it is possible for an L2 function on the circle, which is a sum of an almost everywhere convergent series of exponentials with positive frequencies, to not belong to the Hardy space H2. A consequence in the uniqueness theory is obtained.

Il existe une série trigonométrique dont toutes les fréquences sont positives et qui converge presque partout vers une fonction de carré intégrable qui admet des fréquences négatives. Ce fait est équivalent à l'existence de la série trigonométrique mentionnée dans le titre. Il s'agit donc d'une contribution à la théorie de l'unicité du développement trigonométrique.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00097-9

Gady Kozma 1; Alexander Olevskiǐ 2

1 The Weizmann Institute of Science, Rehovot, Israel
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
@article{CRMATH_2003__336_6_475_0,
     author = {Gady Kozma and Alexander Olevskiǐ},
     title = {A null series with small anti-analytic part},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--478},
     publisher = {Elsevier},
     volume = {336},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00097-9},
     language = {en},
}
TY  - JOUR
AU  - Gady Kozma
AU  - Alexander Olevskiǐ
TI  - A null series with small anti-analytic part
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 475
EP  - 478
VL  - 336
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00097-9
LA  - en
ID  - CRMATH_2003__336_6_475_0
ER  - 
%0 Journal Article
%A Gady Kozma
%A Alexander Olevskiǐ
%T A null series with small anti-analytic part
%J Comptes Rendus. Mathématique
%D 2003
%P 475-478
%V 336
%N 6
%I Elsevier
%R 10.1016/S1631-073X(03)00097-9
%G en
%F CRMATH_2003__336_6_475_0
Gady Kozma; Alexander Olevskiǐ. A null series with small anti-analytic part. Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 475-478. doi : 10.1016/S1631-073X(03)00097-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00097-9/

[1] N.K. Bary A Treatise on Trigonometric Series, Pergamon Press, 1964

[2] R.D. Berman Boundary limits and an asymptotic Phragmén–Lindelöf theorem for analytic functions of slow growth, Indiana Univ. Math. J., Volume 41 (1992) no. 2, pp. 465-481

[3] L. Carleson On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157

[4] J.-P. Kahane; R. Salem Ensemles Parfaits et Series Trigonometriques, Hermann, 1994

[5] A. Kechris; A. Louveau Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge University Press, 1987

Cited by Sources:

Comments - Policy