[Sur la convergence à l'infini de la solution de Leray des équations bidimensionnelles de Navier–Stokes vers la valeur asymptotique imposée]
Dans cette Note on prouve que , la solution vitesse de Leray des équations stationnaires, incompressibles, bidimensionnelles de Navier–Stokes, tend à l'infini vers le vecteur imposé On montre aussi que la suite de solutions de Leray du même problème aux limites dans les domaines bornés converge quasi-uniformément dans vers
In this Note we prove that , the Leray velocity solution to the steady incompressible, two-dimensional Navier–Stokes equations, tends at infinity to the prescribed vector We show also that the sequence of Leray solutions to the same boundary value problem in the bounded domains converges quasi-uniformly in to
Accepté le :
Publié le :
Dan Socolescu 1
@article{CRMATH_2003__336_9_739_0, author = {Dan Socolescu}, title = {On the convergence at infinity of the {Leray} solution of the two-dimensional {Navier{\textendash}Stokes} equations to the prescribed asymptotic value}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--744}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00127-4}, language = {en}, }
TY - JOUR AU - Dan Socolescu TI - On the convergence at infinity of the Leray solution of the two-dimensional Navier–Stokes equations to the prescribed asymptotic value JO - Comptes Rendus. Mathématique PY - 2003 SP - 739 EP - 744 VL - 336 IS - 9 PB - Elsevier DO - 10.1016/S1631-073X(03)00127-4 LA - en ID - CRMATH_2003__336_9_739_0 ER -
%0 Journal Article %A Dan Socolescu %T On the convergence at infinity of the Leray solution of the two-dimensional Navier–Stokes equations to the prescribed asymptotic value %J Comptes Rendus. Mathématique %D 2003 %P 739-744 %V 336 %N 9 %I Elsevier %R 10.1016/S1631-073X(03)00127-4 %G en %F CRMATH_2003__336_9_739_0
Dan Socolescu. On the convergence at infinity of the Leray solution of the two-dimensional Navier–Stokes equations to the prescribed asymptotic value. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 739-744. doi : 10.1016/S1631-073X(03)00127-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00127-4/
[1] On Leray's problem of steady Navier–Stokes flow past a body in the plane, Acta Math., Volume 161 (1988), pp. 71-130
[2] The asymptotic behaviour of a vortex far away from a body in a plane flow of viscous fluid, Prikl. Mat. Mekh., Volume 34 (1970), pp. 911-925
[3] Asymptotic properties of Leray's solution of the stationary two-dimensional Navier–Stokes equations, Uspekhi Mat. Nauk, Volume 29 (1974), pp. 109-122
[4] Asymptotic properties of steady plane solutions of Navier–Stokes equations with bounded Dirichlet integral, Ann. Scuola Norm. Sup. Pisa, Volume 5 (1978), pp. 381-404
[5] Études de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82
[6] Analiza Matematica, Vol. II, Editura Tehnica, Bucuresti, 1958
[7] Sur une classe de fonctions d'une variable complexe et sur certaines équations intégrales, Rend. Circ. Mat. Palermo, Volume 33 (1912), pp. 108-113
[8] On the asymptotic behaviour of solutions with bounded Dirichlet integral to the steady Navier–Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 427-432
[9] D. Socolescu, On the unique solvability of the Leray problem to the steady two-dimensional Navier–Stokes equations, submitted for publication
[10] On the unique solvability of the two-dimensional Poincaré-Stekloff problem for viscous incompressible fluids (S. Cleja-Tigoiu; D. Socolescu; V. Tigoiu, eds.), Geometry, Continua and Microstructures, Proceedings of the fifth International Seminar, Sinaia-Romania, September 26–28, 2001
[11] Verallgemeinerte analytische Funktionen, Akademie-Verlag, Berlin, 1963
Cité par Sources :
Commentaires - Politique