[Une remarque sur les infranilautomorphismes hyperboliques]
Nous montrons qu'une 2-forme exacte, préservée par un infranilautomorphisme hyperbolique, s'annule, et nous en déduisons deux propositions sur les flots d'Anosov géométriques et le changement du temps des suspensions.
We show that any exact 2-form, preserved by a hyperbolic infranilautomorphism, must be zero. We then deduce two propositions about geometric Anosov flows and the time change of suspensions.
Accepté le :
Publié le :
Yong Fang 1
@article{CRMATH_2003__336_9_769_0, author = {Yong Fang}, title = {A remark about hyperbolic infranilautomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--772}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00171-7}, language = {en}, }
Yong Fang. A remark about hyperbolic infranilautomorphisms. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 769-772. doi : 10.1016/S1631-073X(03)00171-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00171-7/
[1] Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., Volume 5 (1992), pp. 33-74
[2] Y. Fang, Geometric Anosov flows of dimension 5 with smooth distributions, Preprint of I.R.M.A., No. 2003-009, Strasbourg
[3] Anosov diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., 14, 1970, pp. 61-93
[4] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4), Volume 20 (1987), pp. 251-270
[5] Invariant two-forms for geodesic flows, Math. Ann., Volume 301 (1995) no. 4, pp. 677-698
[6] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, 1995
[7] Examples of Anosov diffeomorphisms (2002) | arXiv
[8] Discrete Subgroups of Lie Groups, Springer, Berlin, 1972
[9] Anosov flows on infra-homogeneous spaces, Global Analysis, Proc. Symp. Pure Math., XIV, 1970, pp. 299-327
Cité par Sources :
Commentaires - Politique