We show that any exact 2-form, preserved by a hyperbolic infranilautomorphism, must be zero. We then deduce two propositions about geometric Anosov flows and the time change of suspensions.
Nous montrons qu'une 2-forme exacte, préservée par un infranilautomorphisme hyperbolique, s'annule, et nous en déduisons deux propositions sur les flots d'Anosov géométriques et le changement du temps des suspensions.
Accepted:
Published online:
Yong Fang 1
@article{CRMATH_2003__336_9_769_0, author = {Yong Fang}, title = {A remark about hyperbolic infranilautomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--772}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00171-7}, language = {en}, }
Yong Fang. A remark about hyperbolic infranilautomorphisms. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 769-772. doi : 10.1016/S1631-073X(03)00171-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00171-7/
[1] Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., Volume 5 (1992), pp. 33-74
[2] Y. Fang, Geometric Anosov flows of dimension 5 with smooth distributions, Preprint of I.R.M.A., No. 2003-009, Strasbourg
[3] Anosov diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., 14, 1970, pp. 61-93
[4] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4), Volume 20 (1987), pp. 251-270
[5] Invariant two-forms for geodesic flows, Math. Ann., Volume 301 (1995) no. 4, pp. 677-698
[6] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, 1995
[7] Examples of Anosov diffeomorphisms (2002) | arXiv
[8] Discrete Subgroups of Lie Groups, Springer, Berlin, 1972
[9] Anosov flows on infra-homogeneous spaces, Global Analysis, Proc. Symp. Pure Math., XIV, 1970, pp. 299-327
Cited by Sources:
Comments - Policy