Comptes Rendus
Dynamical Systems
On the cohomological equation for interval exchange maps
[Sur l'équation cohomologique pour les échanges d'intervalles]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 941-948.

On présente une classe explicite d'échanges d'intervalles T, de mesure pleine, pour laquelle l'équation cohomologique ΨΨT=Φ admet une solution bornée Ψ, à condition que la donnée Φ appartienne à un sous-espace de codimension finie de l'espace des fonctions dont la dérivée sur chaque intervalle est de variation bornée.

Cette classe est définie par une condition diophantienne « de type Roth » exprimé dans une variante du développement en fraction continue de Rauzy–Veech–Zorich associé à T.

We exhibit an explicit full measure class of minimal interval exchange maps T for which the cohomological equation ΨΨT=Φ has a bounded solution Ψ provided that the datum Φ belongs to a finite codimension subspace of the space of functions having on each interval a derivative of bounded variation.

The class of interval exchange maps is characterized in terms of a diophantine condition of “Roth type” imposed to an acceleration of the Rauzy–Veech–Zorich continued fraction expansion associated to T.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00222-X

Stefano Marmi 1, 2 ; Pierre Moussa 3 ; Jean-Christophe Yoccoz 4

1 Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, Loc. Rizzi, 33100 Udine, Italy
2 Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
3 Service de physique théorique, CEA/Saclay, 91191 Gif-Sur-Yvette, France
4 Collège de France, 3, rue d'Ulm, 75005 Paris, France
@article{CRMATH_2003__336_11_941_0,
     author = {Stefano Marmi and Pierre Moussa and Jean-Christophe Yoccoz},
     title = {On the cohomological equation for interval exchange maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {941--948},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00222-X},
     language = {en},
}
TY  - JOUR
AU  - Stefano Marmi
AU  - Pierre Moussa
AU  - Jean-Christophe Yoccoz
TI  - On the cohomological equation for interval exchange maps
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 941
EP  - 948
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00222-X
LA  - en
ID  - CRMATH_2003__336_11_941_0
ER  - 
%0 Journal Article
%A Stefano Marmi
%A Pierre Moussa
%A Jean-Christophe Yoccoz
%T On the cohomological equation for interval exchange maps
%J Comptes Rendus. Mathématique
%D 2003
%P 941-948
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00222-X
%G en
%F CRMATH_2003__336_11_941_0
Stefano Marmi; Pierre Moussa; Jean-Christophe Yoccoz. On the cohomological equation for interval exchange maps. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 941-948. doi : 10.1016/S1631-073X(03)00222-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00222-X/

[1] G. Forni Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. of Math., Volume 146 (1997), pp. 295-344

[2] W.H. Gottschalk; G.A. Hedlund Topological dynamics, Amer. Math. Soc. Collog. Publ., Volume 36 (1955)

[3] M. Keane Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31

[4] M. Keane Non-ergodic interval exchange transformations, Israel J. Math., Volume 26 (1977), pp. 188-196

[5] H.B. Keynes; D. Newton A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Volume 148 (1976), pp. 101-105

[6] H. Masur Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200

[7] G. Rauzy Échanges d'intervalles et transformations induites, Acta Arit. (1979), pp. 315-328

[8] W. Veech Interval exchange transformations, J. Anal. Math., Volume 33 (1978), pp. 222-272

[9] W. Veech Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242

[10] A. Zorich Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, Volume 46 (1996) no. 2, pp. 325-370

[11] A. Zorich Deviation for interval exchange transformations, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 1477-1499

Cité par Sources :

Commentaires - Politique