[Normalité asymptotique de la méthode ET – application au test ET]
Nous proposons un test permettant de vérifier l'adéquation de la queue d'une fonction de répartition F0 aux observations extrêmes et de contrôler si cette queue fournit des extrapolations raisonnables au-delà de l'observation maximale. Le test est basé sur la loi asymptotique de l'estimateur ET (Exponential Tail) des quantiles extrêmes qui est établie dans une Note jointe. Le niveau et la puissance asymptotiques du test sont étudiés pour plusieurs classes de lois.
We propose a procedure to test the adequacy of the tail of a given F0 to extreme observations and to check that this tail provides reasonable extrapolations above the maximal observation. The test is based on the asymptotic distribution of the ET (Exponential Tail) estimate of extreme quantiles which is established in a companion Note. The asymptotic level and power of the test are studied for several classes of distributions.
Accepté le :
Publié le :
Jean Diebolt 1 ; Myriam Garrido 2 ; Stéphane Girard 2
@article{CRMATH_2003__337_3_213_0, author = {Jean Diebolt and Myriam Garrido and St\'ephane Girard}, title = {Asymptotic normality of the {ET} method {\textendash} application to the {ET~test}}, journal = {Comptes Rendus. Math\'ematique}, pages = {213--218}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00238-3}, language = {en}, }
TY - JOUR AU - Jean Diebolt AU - Myriam Garrido AU - Stéphane Girard TI - Asymptotic normality of the ET method – application to the ET test JO - Comptes Rendus. Mathématique PY - 2003 SP - 213 EP - 218 VL - 337 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(03)00238-3 LA - en ID - CRMATH_2003__337_3_213_0 ER -
Jean Diebolt; Myriam Garrido; Stéphane Girard. Asymptotic normality of the ET method – application to the ET test. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 213-218. doi : 10.1016/S1631-073X(03)00238-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00238-3/
[1] Regular Variation, Encyclopedia Math. Appl., 27, Cambridge University Press, 1987
[2] Tail estimates motivated by extreme value theory, Ann. Statist., Volume 12 (1984), pp. 1467-1487
[3] Consistency of the ET method and smooth variations, C. R. Acad. Sci. Paris, Sér. I, Volume 329 (1999), pp. 821-826
[4] J. Diebolt, M. Garrido, S. Girard, Le test ET : test d'adéquation d'un modèle central à une queue de distribution, Technical Report INRIA RR-4170, 2001
[5] J. Diebolt, M. Garrido, S. Girard, Asymptotic normality of the ET method for extreme quantile estimation. Application to the ET test, Technical Report INRIA RR-4551, 2002
[6] J. Diebolt, M. Garrido, S. Girard, Asymptotic normality of the ET method for extreme quantile estimation, C. R. Acad. Sci. Paris, Sér. I (2002) submitted for publication
[7] Distribution arbitrariness in structural reliability, Structural Safety and Reliability, Balkema, Rotterdam, 1994, pp. 1241-1247
[8] Pitfalls and practical considerations in product life analysis, part 1: Basic concepts and dangers of extrapolation, J. Quality Technology, Volume 14 (1982)
Cité par Sources :
Commentaires - Politique