Comptes Rendus
Analyse numérique/Équations aux dérivées partielles
Système de Stokes avec flux de vitesse et pression imposés
[Stokes equations with given velocity fluxes and pressure]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 2, pp. 119-124.

In this Note, we study the Stokes equations with imposed velocity fluxes and pressure, in a bounded domain, with a piecewise smooth boundary.

Dans cette Note, nous étudions le système de Stokes avec flux de vitesse et pression imposés, dans un domaine borné, à bord régulier par morceaux.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00270-X
Patrick Ciarlet 1

1 ENSTA et CNRS UMR 2706, 32, boulevard Victor, 75739 Paris cedex 15, France
@article{CRMATH_2003__337_2_119_0,
     author = {Patrick Ciarlet},
     title = {Syst\`eme de {Stokes} avec flux de vitesse et pression impos\'es},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--124},
     publisher = {Elsevier},
     volume = {337},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00270-X},
     language = {fr},
}
TY  - JOUR
AU  - Patrick Ciarlet
TI  - Système de Stokes avec flux de vitesse et pression imposés
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 119
EP  - 124
VL  - 337
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00270-X
LA  - fr
ID  - CRMATH_2003__337_2_119_0
ER  - 
%0 Journal Article
%A Patrick Ciarlet
%T Système de Stokes avec flux de vitesse et pression imposés
%J Comptes Rendus. Mathématique
%D 2003
%P 119-124
%V 337
%N 2
%I Elsevier
%R 10.1016/S1631-073X(03)00270-X
%G fr
%F CRMATH_2003__337_2_119_0
Patrick Ciarlet. Système de Stokes avec flux de vitesse et pression imposés. Comptes Rendus. Mathématique, Volume 337 (2003) no. 2, pp. 119-124. doi : 10.1016/S1631-073X(03)00270-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00270-X/

[1] M. Amara; E. Chacon-Vera; D. Trujillo A three field stabilized finite element method for the Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 603-608

[2] C. Amrouche; C. Bernardi; M. Dauge; V. Girault Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[3] F. Assous, P. Ciarlet, Jr., E. Garcia, Singular electromagnetic fields in a polyhedral domain, en préparation

[4] F. Assous; P. Ciarlet; P.-A. Raviart; E. Sonnendrücker A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain, Math. Methods Appl. Sci., Volume 22 (1999), pp. 485-499

[5] C. Conca; C. Pares; O. Pironneau; M. Thiriet Navier–Stokes equations with imposed pressure and velocity fluxes, J. Numer. Methods Fluids, Volume 20 (1995), pp. 267-287

[6] M. Costabel A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl., Volume 157 (1991), pp. 527-541

[7] M. Costabel; M. Dauge; S. Nicaise Singularities of Maxwell interface problems, Math. Mod. Numer. Anal., Volume 33 (1999), pp. 627-649

[8] P. Fernandes; G. Gilardi Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997), pp. 957-991

[9] V. Girault; P.-A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer Ser. Comput. Math., 1341, Springer-Verlag, Berlin, 1986

Cited by Sources:

Comments - Policy


Articles of potential interest

Numerical simulation of corner singularities: a paradox in Maxwell-like problems

Christophe Hazard

C. R. Méca (2002)


A three field stabilized finite element method for the Stokes equations

Mohamed Amara; Eliseo Chacón Vera; David Trujillo

C. R. Math (2002)


Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron

Annalisa Buffa; Martin Costabel; Monique Dauge

C. R. Math (2003)