Nous considérons l'équation de Schrödinger non linéaire
We consider the nonlinear Schödinger equation
Accepté le :
Publié le :
Dario Bambusi 1 ; Benoît Grébert 2
@article{CRMATH_2003__337_6_409_0, author = {Dario Bambusi and Beno{\^\i}t Gr\'ebert}, title = {Forme normale pour {NLS} en dimension quelconque}, journal = {Comptes Rendus. Math\'ematique}, pages = {409--414}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00368-6}, language = {fr}, }
Dario Bambusi; Benoît Grébert. Forme normale pour NLS en dimension quelconque. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 409-414. doi : 10.1016/S1631-073X(03)00368-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00368-6/
[1] Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., Volume 234 (2003), pp. 253-285
[2] D. Bambusi, Averaging theorem for quasilinear Hamiltonian PDEs, Ann. Inst. H. Poincaré, in press
[3] Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equation, GAFA, Volume 6 (1996), pp. 201-230
[4] Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. of Math., Volume 148 (1998), pp. 363-439
[5] On diffusion in high dimensional Hamiltonian systems and PDE, J. Anal. Math., Volume 80 (2000), pp. 1-35
[6] J. Bourgain, Green functions estimates for lattice Schrödinger operators and applications, Preprint, 2003
[7] Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panorama et Synthèses, 9, SMF, Paris, 2000
[8] Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 46 (1993), pp. 1409-1501
[9] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 65-222
[10] Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer, 1994
[11] Analysis of Hamiltonian PDEs, Oxford Lecture Ser. Math. Appl., 19, Oxford University Press, Oxford, 2000
- None, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3706
- Almost global existence for some Hamiltonian PDEs on manifolds with globally integrable geodesic flow, Nonlinearity, Volume 38 (2025) no. 5, p. 57 (Id/No 055013) | DOI:10.1088/1361-6544/adc967 | Zbl:8036741
- Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori, Communications in Mathematical Physics, Volume 405 (2024) no. 1, p. 50 (Id/No 15) | DOI:10.1007/s00220-023-04899-z | Zbl:1537.35319
- About linearization of infinite-dimensional Hamiltonian systems, Communications in Mathematical Physics, Volume 394 (2022) no. 1, pp. 39-72 | DOI:10.1007/s00220-022-04398-7 | Zbl:1505.37088
- An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Communications in Mathematical Physics, Volume 375 (2020) no. 3, pp. 2089-2153 | DOI:10.1007/s00220-019-03618-x | Zbl:1441.35217
- Long time behavior of the solutions of NLW on the
-dimensional torus, Forum of Mathematics, Sigma, Volume 8 (2020), p. 26 (Id/No e12) | DOI:10.1017/fms.2020.8 | Zbl:1441.35169 - Normal form for semi-linear Klein-Gordon equations with superquadratic oscillators, Monatshefte für Mathematik, Volume 179 (2016) no. 4, pp. 535-575 | DOI:10.1007/s00605-015-0739-2 | Zbl:1347.35171
- Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Communications in Mathematical Physics, Volume 329 (2014) no. 1, pp. 405-434 | DOI:10.1007/s00220-014-1977-1 | Zbl:1296.35169
- An averaging theorem for nonlinear Schrödinger equations with small nonlinearities, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 9, pp. 3555-3574 | DOI:10.3934/dcds.2014.34.3555 | Zbl:1310.35215
- A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Analysis PDE, Volume 6 (2013) no. 6, p. 1243 | DOI:10.2140/apde.2013.6.1243
- Perturbation Theory for PDEs, Mathematics of Complexity and Dynamical Systems (2012), p. 1337 | DOI:10.1007/978-1-4614-1806-1_84
- Perturbation Theory for PDEs, Encyclopedia of Complexity and Systems Science (2009), p. 6709 | DOI:10.1007/978-0-387-30440-3_401
- Perturbation Theory for PDEs, Perturbation Theory (2009), p. 229 | DOI:10.1007/978-1-0716-2621-4_401
- Measures on double or resonant eigenvalues for linear Schrödinger operator, Journal of Functional Analysis, Volume 254 (2008) no. 5, pp. 1269-1281 | DOI:10.1016/j.jfa.2007.11.009 | Zbl:1146.35062
- Birkhoff normal form for partial differential equations with tame modulus, Duke Mathematical Journal, Volume 135 (2006) no. 3, pp. 507-567 | DOI:10.1215/s0012-7094-06-13534-2 | Zbl:1110.37057
- Galerkin averaging method and Poincaré normal form for some quasilinear PDEs, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 4 (2005) no. 4, pp. 669-702 | Zbl:1170.35317
- A Birkhoff–Lewis-Type Theorem for Some Hamiltonian PDEs, SIAM Journal on Mathematical Analysis, Volume 37 (2005) no. 1, p. 83 | DOI:10.1137/s0036141003436107
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier