Comptes Rendus
Systèmes dynamiques
Forme normale pour NLS en dimension quelconque
Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 409-414.

Nous considérons l'équation de Schrödinger non linéaire

-iut=-Δu+V*u+g(u,u¯)
avec des conditions aux bords périodiques dans [-π,π]d,d1. La fonction g est analytique dans les deux variables et d'ordre au moins 2 ; le potentiel V est dans L2. Nous démontrons que, sous une hypothèse de non résonances générique pour V dans une certaine classe, il existe pour tout entier M une transformation canonique qui met l'Hamiltonien sous forme normale de Birkhoff à un reste d'ordre M près. La transformation canonique est bien définie dans un petit voisinage de l'origine de tout espace de Sobolev d'ordre assez grand. D'un point de vue dynamique, ceci signifie en particulier que si la donnée initiale est de norme plus petite que ε, la solution reste plus petite que 2ε pour des temps t de l'ordre de ε−(M−1). De plus, pendant le même laps de temps, la solution reste proche d'un tore de dimension infinie.

We consider the nonlinear Schödinger equation

-iut=-Δu+V*u+g(u,u¯)
with periodic boundary conditions on [-π,π]d,d1;g is analytic and g(0,0)=Dg(0,0)=0;V is a potential in L2. Under a nonresonance condition which is fulfilled for most Vs we prove that, for any integer M there exists a canonical transformation that puts the Hamiltonian in Birkhoff normal form up to a reminder of order M. The canonical tranformation is well defined in a neighbourhood of the origin of any Sobolev space of sufficiently high order. From the dynamical point of view this means in particular that if the initial data is smaller than ε, the solution remains smaller than 2ε for all times t smaller than ε−(M−1). Moreover, for the same times, the solution is close to an infinite dimensional torus.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00368-6

Dario Bambusi 1 ; Benoît Grébert 2

1 Dipartimento di Matematica, Università degli studi di Milano, Via Saldini 50, 20133 Milano, Italie
2 Laboratoire de mathématiques Jean Leray, Université de Nantes, 2, rue de la Houssinière, 44072 Nantes cedex 03, France
@article{CRMATH_2003__337_6_409_0,
     author = {Dario Bambusi and Beno{\^\i}t Gr\'ebert},
     title = {Forme normale pour {NLS} en dimension quelconque},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {409--414},
     publisher = {Elsevier},
     volume = {337},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00368-6},
     language = {fr},
}
TY  - JOUR
AU  - Dario Bambusi
AU  - Benoît Grébert
TI  - Forme normale pour NLS en dimension quelconque
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 409
EP  - 414
VL  - 337
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00368-6
LA  - fr
ID  - CRMATH_2003__337_6_409_0
ER  - 
%0 Journal Article
%A Dario Bambusi
%A Benoît Grébert
%T Forme normale pour NLS en dimension quelconque
%J Comptes Rendus. Mathématique
%D 2003
%P 409-414
%V 337
%N 6
%I Elsevier
%R 10.1016/S1631-073X(03)00368-6
%G fr
%F CRMATH_2003__337_6_409_0
Dario Bambusi; Benoît Grébert. Forme normale pour NLS en dimension quelconque. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 409-414. doi : 10.1016/S1631-073X(03)00368-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00368-6/

[1] D. Bambusi Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., Volume 234 (2003), pp. 253-285

[2] D. Bambusi, Averaging theorem for quasilinear Hamiltonian PDEs, Ann. Inst. H. Poincaré, in press

[3] J. Bourgain Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equation, GAFA, Volume 6 (1996), pp. 201-230

[4] J. Bourgain Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. of Math., Volume 148 (1998), pp. 363-439

[5] J. Bourgain On diffusion in high dimensional Hamiltonian systems and PDE, J. Anal. Math., Volume 80 (2000), pp. 1-35

[6] J. Bourgain, Green functions estimates for lattice Schrödinger operators and applications, Preprint, 2003

[7] W. Craig Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panorama et Synthèses, 9, SMF, Paris, 2000

[8] W. Craig; C.E. Wayne Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 46 (1993), pp. 1409-1501

[9] R.S. Hamilton The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 65-222

[10] S.B. Kuksin Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer, 1994

[11] S.B. Kuksin Analysis of Hamiltonian PDEs, Oxford Lecture Ser. Math. Appl., 19, Oxford University Press, Oxford, 2000

  • Joackim Bernier; Benoît Grébert None, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3706
  • D. Bambusi; R. Feola; B. Langella; F. Monzani Almost global existence for some Hamiltonian PDEs on manifolds with globally integrable geodesic flow, Nonlinearity, Volume 38 (2025) no. 5, p. 57 (Id/No 055013) | DOI:10.1088/1361-6544/adc967 | Zbl:8036741
  • D. Bambusi; R. Feola; R. Montalto Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori, Communications in Mathematical Physics, Volume 405 (2024) no. 1, p. 50 (Id/No 15) | DOI:10.1007/s00220-023-04899-z | Zbl:1537.35319
  • Michela Procesi; Laurent Stolovitch About linearization of infinite-dimensional Hamiltonian systems, Communications in Mathematical Physics, Volume 394 (2022) no. 1, pp. 39-72 | DOI:10.1007/s00220-022-04398-7 | Zbl:1505.37088
  • Luca Biasco; Jessica Elisa Massetti; Michela Procesi An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Communications in Mathematical Physics, Volume 375 (2020) no. 3, pp. 2089-2153 | DOI:10.1007/s00220-019-03618-x | Zbl:1441.35217
  • Joackim Bernier; Erwan Faou; Benoît Grébert Long time behavior of the solutions of NLW on the d-dimensional torus, Forum of Mathematics, Sigma, Volume 8 (2020), p. 26 (Id/No e12) | DOI:10.1017/fms.2020.8 | Zbl:1441.35169
  • Rafik Imekraz Normal form for semi-linear Klein-Gordon equations with superquadratic oscillators, Monatshefte für Mathematik, Volume 179 (2016) no. 4, pp. 535-575 | DOI:10.1007/s00605-015-0739-2 | Zbl:1347.35171
  • Marcel Guardia Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Communications in Mathematical Physics, Volume 329 (2014) no. 1, pp. 405-434 | DOI:10.1007/s00220-014-1977-1 | Zbl:1296.35169
  • Guan Huang An averaging theorem for nonlinear Schrödinger equations with small nonlinearities, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 9, pp. 3555-3574 | DOI:10.3934/dcds.2014.34.3555 | Zbl:1310.35215
  • Erwan Faou; Benoît Grébert A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Analysis PDE, Volume 6 (2013) no. 6, p. 1243 | DOI:10.2140/apde.2013.6.1243
  • Dario Bambusi Perturbation Theory for PDEs, Mathematics of Complexity and Dynamical Systems (2012), p. 1337 | DOI:10.1007/978-1-4614-1806-1_84
  • Dario Bambusi Perturbation Theory for PDEs, Encyclopedia of Complexity and Systems Science (2009), p. 6709 | DOI:10.1007/978-0-387-30440-3_401
  • Dario Bambusi Perturbation Theory for PDEs, Perturbation Theory (2009), p. 229 | DOI:10.1007/978-1-0716-2621-4_401
  • Didier Bresch; Benoît Desjardins; Emmanuel Grenier Measures on double or resonant eigenvalues for linear Schrödinger operator, Journal of Functional Analysis, Volume 254 (2008) no. 5, pp. 1269-1281 | DOI:10.1016/j.jfa.2007.11.009 | Zbl:1146.35062
  • D. Bambusi; B. Grébert Birkhoff normal form for partial differential equations with tame modulus, Duke Mathematical Journal, Volume 135 (2006) no. 3, pp. 507-567 | DOI:10.1215/s0012-7094-06-13534-2 | Zbl:1110.37057
  • Dario Bambusi Galerkin averaging method and Poincaré normal form for some quasilinear PDEs, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 4 (2005) no. 4, pp. 669-702 | Zbl:1170.35317
  • Dario Bambusi; Massimiliano Berti A Birkhoff–Lewis-Type Theorem for Some Hamiltonian PDEs, SIAM Journal on Mathematical Analysis, Volume 37 (2005) no. 1, p. 83 | DOI:10.1137/s0036141003436107

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: