Comptes Rendus
Differential Geometry
Ricci flow on compact Kähler manifolds of positive bisectional curvature
[Le flot de Ricci sur une variété kählérienne compacte à courbure bisectionnelle positive]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 12, pp. 781-784.

Cette Note annonce une nouvelle démonstration de l'estimée uniforme de la courbure des métriques solutions du flot de Ricci sur une variété kählérienne compacte à courbure bisectionnelle positive. La démonstration proposée ne suppose pas l'existence d'une métrique d'Einstein–Kähler sur la variété, contrairement à un travail récent de XiuXiong Chen et de Gang Tian. Elle s'appuie sur l'inégalité de Harnack pour le flot de Ricci–Kähler (voir Invent. Math. 10 (1992) 247–263), et aussi sur une estimation du rayon d'injectivité du flot de Ricci obtenue récemment par Perelman.

This Note announces a new proof of the uniform estimate on the curvature of metric solutions to the Ricci flow on a compact Kähler manifold with positive bisectional curvature. This proof does not pre-suppose the existence of a Kähler–Einstein metric on the manifold, unlike the recent work of XiuXiong Chen and Gang Tian. It is based on the Harnack inequality for the Ricci–Kähler flow (see Invent. Math. 10 (1992) 247–263), and also on an estimation of the injectivity radius for the Ricci flow, obtained recently by Perelman.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.09.030
Huai-Dong Cao 1, 2 ; Bing-Long Chen 3, 4 ; Xi-Ping Zhu 3, 4

1 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
2 Institute for Pure and Applied Mathematics at UCLA, IPAM Building, 460 Portola Plaza, Box 957121, Los Angeles, CA 90095-7121, USA
3 Department of Mathematics, Zhongshang University, Guangzhou, 510275, PR China
4 The Institute of Mathematical Sciences, Unit 601, 6/F, Academic Building No. 1, The Chinese University of Hong Kong, Shatin, Hong Kong
@article{CRMATH_2003__337_12_781_0,
     author = {Huai-Dong Cao and Bing-Long Chen and Xi-Ping Zhu},
     title = {Ricci flow on compact {K\"ahler} manifolds of positive bisectional curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {781--784},
     publisher = {Elsevier},
     volume = {337},
     number = {12},
     year = {2003},
     doi = {10.1016/j.crma.2003.09.030},
     language = {en},
}
TY  - JOUR
AU  - Huai-Dong Cao
AU  - Bing-Long Chen
AU  - Xi-Ping Zhu
TI  - Ricci flow on compact Kähler manifolds of positive bisectional curvature
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 781
EP  - 784
VL  - 337
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2003.09.030
LA  - en
ID  - CRMATH_2003__337_12_781_0
ER  - 
%0 Journal Article
%A Huai-Dong Cao
%A Bing-Long Chen
%A Xi-Ping Zhu
%T Ricci flow on compact Kähler manifolds of positive bisectional curvature
%J Comptes Rendus. Mathématique
%D 2003
%P 781-784
%V 337
%N 12
%I Elsevier
%R 10.1016/j.crma.2003.09.030
%G en
%F CRMATH_2003__337_12_781_0
Huai-Dong Cao; Bing-Long Chen; Xi-Ping Zhu. Ricci flow on compact Kähler manifolds of positive bisectional curvature. Comptes Rendus. Mathématique, Volume 337 (2003) no. 12, pp. 781-784. doi : 10.1016/j.crma.2003.09.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.030/

[1] S. Bando Compact 3-folds with nonnegative bisectional curvature, J. Differential Geom., Volume 19 (1984), pp. 283-297

[2] R.L. Bishop; S.I. Goldberg On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc., Volume 16 (1965), pp. 119-122

[3] H.-D. Cao Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 359-372

[4] H.-D. Cao On Hanarck's inequalities for the Kähler–Ricci flow, Invent. Math., Volume 109 (1992), pp. 247-263

[5] X. Chen; G. Tian Ricci flow on Kähler–Einstein surfaces, Invent. Math., Volume 147 (2002), pp. 487-544

[6] X. Chen, G. Tian, Ricci flow on Kähler–Einstein manifolds, Preprint

[7] B. Chow The Ricci flow on the 2-sphere, J. Differential Geom., Volume 33 (1991), pp. 325-334

[8] R.S. Hamilton The Ricci flow on surfaces, Mathematics and General Relativity, Contemp. Math., 71, 1988, pp. 237-261

[9] R.S. Hamilton An isoperimetric estimate for the Ricci flow on the 2-sphere, Modern Methods in Complex Analysis (Princeton, NJ, 1992), Ann. of Math. Stud., 137, Princeton Univ. Press, 1995, pp. 201-222

[10] N. Mok The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom., Volume 27 (1988), pp. 179-214

[11] S. Mori Projective manifolds with ample tangent bundles, Ann. Math., Volume 76 (1979), pp. 213-234

[12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint

[13] R. Schoen; S.-T. Yau Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994

[14] Y.-T. Siu; S.-T. Yau Compact Kähler manifolds of positive bisectional curvature, Inven. Math., Volume 59 (1980), pp. 189-204

[15] G. Tian Kähler–Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 1-39

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The Ricci iteration and its applications

Yanir A. Rubinstein

C. R. Math (2007)


Uniqueness of extremal Kähler metrics

Xiuxiong Chen; Gang Tian

C. R. Math (2005)


Regularity theory for pluriclosed flow

Jeffrey Streets; Gang Tian

C. R. Math (2011)