Conditions are given under which the solution map of a stochastic differential equation on a Riemannian manifolds M intertwines the differentiation operator d on the path space of M and that of the canonical Wiener space, . A uniqueness property of d on the path space follows. Results are also given for higher derivatives and covariant derivatives.
Nous donnons des conditions sous lesquelles les applications d'Itô donnant la solution d'une équation différentielle stochastique sur une variété Riemannienne M entrelace l'opérateur de dérivation d sur l'espace de chemins de M, ainsi que celui de l'espace de Wiener canonique, de . Nous en déduisons une propriété d'unicité de d sur l'espace de chemins. Des résultats sur les dérivées d'ordre supérieur ainsi que sur les dérivées covariantes sont également donnés.
Accepted:
Published online:
K.David Elworthy 1; Xue-Mei Li 2
@article{CRMATH_2003__337_11_741_0, author = {K.David Elworthy and Xue-Mei Li}, title = {Gross{\textendash}Sobolev spaces on path manifolds: uniqueness and intertwining by {It\^o} maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--744}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.004}, language = {en}, }
TY - JOUR AU - K.David Elworthy AU - Xue-Mei Li TI - Gross–Sobolev spaces on path manifolds: uniqueness and intertwining by Itô maps JO - Comptes Rendus. Mathématique PY - 2003 SP - 741 EP - 744 VL - 337 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2003.10.004 LA - en ID - CRMATH_2003__337_11_741_0 ER -
K.David Elworthy; Xue-Mei Li. Gross–Sobolev spaces on path manifolds: uniqueness and intertwining by Itô maps. Comptes Rendus. Mathématique, Volume 337 (2003) no. 11, pp. 741-744. doi : 10.1016/j.crma.2003.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.004/
[1] On the irreducibility of certain Dirichlet forms on loop spaces over compact homogeneous spaces, New Trends in Stochastic Analysis, World Scientific, 1997, pp. 3-42
[2] Differential calculus on path and loop spaces. 1. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 97-102
[3] An L2 estimate for Riemannian anticipative stochastic integrals, J. Funct. Anal., Volume 143 (1997) no. 2, pp. 400-414
[4] Renormalized differential geometry on path spaces: structural equations, curvature, J. Funct. Anal., Volume 139 (1996), pp. 119-181
[5] A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal., Volume 100 (1992), pp. 272-377
[6] The non-equivalence of Dirichlet forms on path spaces, Stochastic Analysis on Infinite-Dimensional Spaces, Longman, 1994, pp. 75-87
[7] Concerning the geometry of stochastic differential equations and stochastic flows, New Trends in Stochastic Analysis, World Scientific, 1997
[8] On the Geometry of Diffusion Operators and Stochastic Flows, Lecture Notes in Math., 1720, Springer, 1999
[9] K.D. Elworthy, X.-M. Li, Itô map and the chain rule in Malliavin calculus, in preparation
[10] Special Itô maps and an L2 Hodge theory for one forms on path spaces, Stochastic Processes, Physics and Geometry: New Interplays, I, American Mathematical Society, 2000, pp. 145-162
[11] Sobolev spaces and capacities theory on path spaces over a compact Riemannian manifold, Probab. Theory Related Fields, Volume 125 (2003), pp. 96-134
[12] The Malliavin Calculus and Related Topics, Springer-Verlag, 1995
[13] A quasihomeomorphism on the Wiener space, Proc. Sympos. Pure Math., Volume 57 (1995), pp. 473-486
[14] On a characterization of the Sobolev spaces over an abstract wiener space, J. Math. Kyoto Univ., Volume 25 (1985) no. 4, pp. 717-725
Cited by Sources:
☆ Research partially supported by NSF grant DMS 0072387 and EPSRC GR/NOO 845.
Comments - Policy