[Homologies of cubic Artin–Schelter regular algebras]
Hochschild homology of cubic Artin–Schelter regular algebras of type A with generic coefficients is computed. We follow the method used by Van den Bergh (K-Theory 8 (1994) 213–230) in the quadratic case, by considering these algebras as deformations of a polynomial algebra, with remarkable Poisson brackets. A new quasi-isomorphism is introduced. De Rham cohomology, cyclic and periodic cyclic homologies, and Hochschild cohomology are also computed.
Nous calculons l'homologie de Hochschild des algèbres Artin–Schelter régulières cubiques de type A à coefficients génériques. Nous suivons la méthode employée par Van den Bergh (K-Theory 8 (1994) 213–230) dans le cas quadratique, en considérant ces algèbres comme déformations d'une algèbre de polynômes, avec crochets de Poisson remarquables. Un nouveau quasi-isomorphisme est introduit. Nous calculons aussi la cohomologie de de Rham, l'homologie cyclique, l'homologie cyclique périodique et la cohomologie de Hochschild.
Accepted:
Published online:
Nicolas Marconnet 1
@article{CRMATH_2004__338_2_117_0, author = {Nicolas Marconnet}, title = {Homologies d'alg\`ebres {Artin{\textendash}Schelter} r\'eguli\`eres cubiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--120}, publisher = {Elsevier}, volume = {338}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2003.10.009}, language = {fr}, }
Nicolas Marconnet. Homologies d'algèbres Artin–Schelter régulières cubiques. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 117-120. doi : 10.1016/j.crma.2003.10.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.009/
[1] Graded algebras of global dimension 3, Adv. in Math., Volume 66 (1987), pp. 171-216
[2] Some algebras associated to automorphisms of elliptic curves (P. Cartier et al., eds.), The Grothendieck Festschrift, vol. 1, Birkhäuser, 1990, pp. 33-85
[3] Koszulity for nonquadratic algebras, J. Algebra, Volume 239 (2001), pp. 705-734
[4] Koszulity for nonquadratic algebras II | arXiv
[5] Homogeneous algebras, J. Algebra, Volume 261 (2003), pp. 172-185
[6] A differential complex for Poisson manifolds, J. Differential Geom., Volume 28 (1988), pp. 93-114
[7] Yang–Mills algebra, Lett. Math. Phys., Volume 61 (2002), pp. 149-158
[8] Non-commutative homology of some three-dimensional quantum spaces, K-Theory, Volume 8 (1994), pp. 213-230
[9] A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1345-1348
Cited by Sources:
Comments - Policy