Comptes Rendus
Optimal Control
A general formula for decay rates of nonlinear dissipative systems
[Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 35-40.

On étudie le problème de la stabilisation des équations de type hyperbolique par un feedback qui peut être frontière ou bien localement distribué. L'objet de cette Note est de montrer qu'il existe une formule générale qui permet d'obtenir un taux de décroissance de l'énergie en fonction du comportement au voisinage de zéro du terme de dissipation non linéaire. Cette formule permet d'unifier tous les cas et notamment ceux pour lesquels le feedback croı̂t polynomialement et ceux pour lesquels il s'écrase exponentiellement en zéro. On donne aussi deux autres exemples significatifs de croissance non polynomiale. On montre pour tous ces exemples que l'on retrouve ou obtient de meilleurs taux de décroissance que ceux de Lasiecka et Tataru (Differential Integral Equations 8 (1993) 507–533) et Martinez (Rev. Mat. Comput. 12 (1999) 251–283).

This work is concerned with stabilization of hyperbolic systems by a nonlinear feedback which can be localized on part of the boundary or locally distributed. We present here a general formula which gives the energy decay rates in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We give also two other significant examples of nonpolynomial growth at the origin. We also show that we either obtain or improve significantly the decay rates of Lasiecka and Tataru (Differential Integral Equations 8 (1993) 507–533) and Martinez (Rev. Mat. Comput. 12 (1999) 251–283).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.10.024

Fatiha Alabau-Boussouira 1

1 LMAM, CNRS-UMR 7122, Université de Metz, Ile du Saulcy, 57045 Metz cedex 01, France
@article{CRMATH_2004__338_1_35_0,
     author = {Fatiha Alabau-Boussouira},
     title = {A general formula for decay rates of nonlinear dissipative systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {35--40},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.10.024},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
TI  - A general formula for decay rates of nonlinear dissipative systems
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 35
EP  - 40
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2003.10.024
LA  - en
ID  - CRMATH_2004__338_1_35_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%T A general formula for decay rates of nonlinear dissipative systems
%J Comptes Rendus. Mathématique
%D 2004
%P 35-40
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crma.2003.10.024
%G en
%F CRMATH_2004__338_1_35_0
Fatiha Alabau-Boussouira. A general formula for decay rates of nonlinear dissipative systems. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 35-40. doi : 10.1016/j.crma.2003.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.024/

[1] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[2] C.M. Dafermos Asymptotic behavior of solutions of evolution equations, Nonlinear Evolution Equations, Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York, 1978, pp. 103-123

[3] A. Haraux Nonlinear Evolution Equations – Global Behavior of Solutions, Lecture Notes in Math., vol. 841, Springer-Verlag, Berlin, 1981

[4] A. Haraux; E. Zuazua Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal., Volume 100 (1988), pp. 191-206

[5] V. Komornik Exact Controllability and Stabilization. The Multiplier Method, Collect. RMA, vol. 36, Masson-Wiley, Paris–Chicester, 1994

[6] I. Lasiecka; D. Tataru Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, Volume 8 (1993), pp. 507-533

[7] G. Lebeau; E. Zuazua Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., Volume 148 (1999), pp. 179-231

[8] K. Liu Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997)

[9] P. Martinez A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., Volume 12 (1999), pp. 251-283

[10] M. Nakao Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., Volume 305 (1996), pp. 403-417

[11] E. Zuazua Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

[12] E. Zuazua Uniform stabilization of the wave equation by nonlinear feedbacks, SIAM J. Control Optim., Volume 28 (1989), pp. 265-268

  • Menglan Liao Decay rates for wave systems with indirect time-space dependent damping, Periodica Mathematica Hungarica, Volume 90 (2025) no. 1, p. 192 | DOI:10.1007/s10998-024-00613-1
  • Ali Wehbe; Mouhammad Ghader A transmission problem for the Timoshenko system with one local Kelvin-Voigt damping and non-smooth coefficient at the interface, Computational and Applied Mathematics, Volume 40 (2021) no. 8, p. 37 (Id/No 297) | DOI:10.1007/s40314-021-01446-1 | Zbl:1499.35082
  • Mohammad Akil; Yacine Chitour; Mouhammad Ghader; Ali Wehbe Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, Volume 119 (2020) no. 3-4, p. 221 | DOI:10.3233/asy-191574
  • Chiraz Kassem; Amina Mortada; Layla Toufayli; Ali Wehbe Local indirect stabilization of N-D system of two coupled wave equations under geometric conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 357 (2019) no. 6, pp. 494-512 | DOI:10.1016/j.crma.2019.06.002 | Zbl:1416.35157
  • Fatiha Alabau-Boussouira; Tarik Ali-Ziane; Fatima Arab; Ouahiba Zaïr Boundary stabilisation of the wave equation in the presence of singularities, International Journal of Control, Volume 91 (2018) no. 2, pp. 383-399 | DOI:10.1080/00207179.2017.1282624 | Zbl:1390.93630
  • Fatiha Alabau-Boussouira; Zhiqiang Wang; Lixin Yu A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 23 (2017) no. 2, pp. 721-749 | DOI:10.1051/cocv/2016011 | Zbl:1362.35176
  • Fatiha Alabau-Boussouira; Piermarco Cannarsa; Günter Leugering Control and stabilization of degenerate wave equations, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 3, pp. 2052-2087 | DOI:10.1137/15m1020538 | Zbl:1373.35185
  • George Avalos; Francesca Bucci Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, Volume 258 (2015) no. 12, pp. 4398-4423 | DOI:10.1016/j.jde.2015.01.037 | Zbl:1319.35180
  • Abraham K. Ishihara; Nhan Nguyen, 53rd IEEE Conference on Decision and Control (2014), p. 2427 | DOI:10.1109/cdc.2014.7039759
  • Fatiha Alabau-Boussouira On Some Recent Advances on Stabilization for Hyperbolic Equations, Control of Partial Differential Equations, Volume 2048 (2012), p. 1 | DOI:10.1007/978-3-642-27893-8_1
  • Fatiha Alabau-Boussouira; Matthieu Léautaud Indirect stabilization of locally coupled wave-type systems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 18 (2012) no. 2, p. 548 | DOI:10.1051/cocv/2011106
  • Fatiha Alabau‐Boussouira; Piermarco Cannarsa Control of Non-linear Partial Differential Equations, Mathematics of Complexity and Dynamical Systems (2012), p. 102 | DOI:10.1007/978-1-4614-1806-1_8
  • Fatiha Alabau-Boussouira; Kaïs Ammari Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system, Journal of Functional Analysis, Volume 260 (2011) no. 8, pp. 2424-2450 | DOI:10.1016/j.jfa.2011.01.003 | Zbl:1217.93034
  • Fatiha Alabau-Boussouira Strong lower energy estimates for nonlinearly damped Timoshenko beams and Petrowsky equations, NoDEA. Nonlinear Differential Equations and Applications, Volume 18 (2011) no. 5, pp. 571-597 | DOI:10.1007/s00030-011-0108-3 | Zbl:1241.34068
  • Fatiha Alabau-Boussouira; Kaïs Ammari Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 3-4, pp. 165-170 | DOI:10.1016/j.crma.2009.12.009 | Zbl:1185.93117
  • Fatiha Alabau-Boussouira A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems, Journal of Differential Equations, Volume 248 (2010) no. 6, pp. 1473-1517 | DOI:10.1016/j.jde.2009.12.005 | Zbl:1397.35068
  • Fatiha Alabau-Boussouira New trends towards lower energy estimates and optimality for nonlinearly damped vibrating systems, Journal of Differential Equations, Volume 249 (2010) no. 5, pp. 1145-1178 | DOI:10.1016/j.jde.2010.04.013 | Zbl:1201.35042
  • Fatiha Alabau-Boussouira; Piermarco Cannarsa A general method for proving sharp energy decay rates for memory-dissipative evolution equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 15-16, pp. 867-872 | DOI:10.1016/j.crma.2009.05.011 | Zbl:1179.35058
  • Fatiha Alabau‐Boussouira; Piermarco Cannarsa Control of Non-linear Partial Differential Equations, Encyclopedia of Complexity and Systems Science (2009), p. 1485 | DOI:10.1007/978-0-387-30440-3_97
  • Louis Tebou Well-posedness and stability of a hinged plate equation with a localized nonlinear structural damping, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 12, p. e2288-e2297 | DOI:10.1016/j.na.2009.05.026 | Zbl:1239.74048
  • Fatiha Alabau-Boussouira; Piermarco Cannarsa; Daniela Sforza Decay estimates for second order evolution equations with memory, Journal of Functional Analysis, Volume 254 (2008) no. 5, pp. 1342-1372 | DOI:10.1016/j.jfa.2007.09.012 | Zbl:1145.35025
  • Genni Fragnelli; Dimitri Mugnai Stability of Solutions for Some Classes of Nonlinear Damped Wave Equations, SIAM Journal on Control and Optimization, Volume 47 (2008) no. 5, p. 2520 | DOI:10.1137/070689735

Cité par 22 documents. Sources : Crossref, zbMATH

Commentaires - Politique