A classification of homogeneous quaternionic Kähler structures by real tensors is given and related to Fino's representation theoretic decomposition. A relationship between the modules whose dimension grows linearly and quaternionic hyperbolic space is found.
Nous donnons une classification des structures kählériennes quaternioniennes homogènes en termes de tenseurs réels, ainsi qu'une rélation avec la décomposition donnée par Fino en utilisant la théorie des représentations. Nous donnons aussi une rélation entre les modules ayant dimension à croissance linéaire et l'espace hyperbolique quaternionien.
Accepted:
Published online:
Marco Castrillón López 1; Pedro M. Gadea 2; Andrew Swann 3
@article{CRMATH_2004__338_1_65_0, author = {Marco Castrill\'on~L\'opez and Pedro M. Gadea and Andrew Swann}, title = {Homogeneous quaternionic {K\"ahler} structures of linear type}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--70}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.10.035}, language = {en}, }
TY - JOUR AU - Marco Castrillón López AU - Pedro M. Gadea AU - Andrew Swann TI - Homogeneous quaternionic Kähler structures of linear type JO - Comptes Rendus. Mathématique PY - 2004 SP - 65 EP - 70 VL - 338 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2003.10.035 LA - en ID - CRMATH_2004__338_1_65_0 ER -
Marco Castrillón López; Pedro M. Gadea; Andrew Swann. Homogeneous quaternionic Kähler structures of linear type. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 65-70. doi : 10.1016/j.crma.2003.10.035. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.035/
[1] Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl., Volume 2 (1968), pp. 97-105
[2] On homogeneous Riemannian manifolds, Duke Math. J., Volume 25 (1958), pp. 647-669
[3] Remarques sur le groupe d'holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris Sér. I Math., Volume 262 (1966), pp. 1316-1318
[4] Einstein Manifolds, Springer, Berlin-Heidelberg, 1987
[5] Intrinsic torsion and weak holonomy, Math. J. Toyama Univ., Volume 21 (1998), pp. 1-22
[6] Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math., Volume 189 (1997), pp. 17-34
[7] Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 87-94
[8] The sixteen classes of almost-Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., Volume 123 (1980) no. 4, pp. 35-58
[9] Quaternion Kählerian manifolds, J. Differential Geom., Volume 9 (1974), pp. 483-500
[10] On homogeneous Riemannian spaces with invariant tensor structures, Soviet Math. Dokl., Volume 21 (1980), pp. 734-737
[11] Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note, vol. 83, Cambridge Univ. Press, Cambridge, UK, 1983
Cited by Sources:
Comments - Policy