[Smoothness of hyperbolic radius]
Let be a bounded domain of class . We show that if u is the maximal solution of Δu=4exp(2u), which tends to +∞ as , then the hyperbolic radius v=exp(−u) is of class C2+α up to the boundary. The proof relies on new Schauder estimates for Fuchsian elliptic equations.
Soit un domaine borné de classe . On montre que si u est la solution maximale de Δu=4exp(2u), qui tend vers +∞ si , alors le rayon hyperbolique v=exp(−u) est de classe C2+α jusqu'au bord. La démonstration repose sur de nouvelles estimations de Schauder pour des équations fuchsiennes elliptiques.
Published online:
Satyanad Kichenassamy 1
@article{CRMATH_2004__338_1_13_0, author = {Satyanad Kichenassamy}, title = {R\'egularit\'e du rayon hyperbolique}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--18}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.10.037}, language = {fr}, }
Satyanad Kichenassamy. Régularité du rayon hyperbolique. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 13-18. doi : 10.1016/j.crma.2003.10.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.037/
[1] On the solution of quasilinear elliptic problems with boundary blow-up, Sympos. Math., Volume 35 (1994), pp. 93-111
[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU=eU and , SIAM Rev., Volume 38 (1996), pp. 191-238
[3] On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems, Differential Integral Equations, Volume 11 (1998), pp. 23-34
[4] The Thomas–Fermi–von Weiszäcker theory of atoms and molecules, Commun. Math. Phys., Volume 79 (1981), pp. 167-180
[5] Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985), pp. 431-457
[6] Elliptic Partial Differential Equations of Elliptic Type, Springer, 1983
[7] On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[8] S. Kichenassamy, On a conjecture of Fefferman and Graham, Adv. Math., à paraı̂tre
[9] Asymptotics, near the boundary, of a solution of a singular boundary-value problem for a semilinear elliptic equation, Differential Equations, Volume 26 (1990), pp. 345-348
[10] Asymptotic behavior of boundary blow-up problems, Differential Integral Equations, Volume 7 (1994), pp. 1001-1019
[11] Partial differential equations invariant under conformal or projective transformations (L. Ahlfors et al., eds.), Contributions to Analysis, Academic Press, 1974, pp. 245-272
[12] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274
[13] On the inequality Δu⩾f(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[14] On the solution of the equation Δu=eu blowing up on the boundary, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996), pp. 445-450
Cited by Sources:
Comments - Policy