We give a classification of all solutions of a general semilinear PDE in the positive quadrant of .
Nous donnons une classification de toutes les solutions d'une EDP semi-linéaire générale dans le quadrant positif de .
Accepted:
Published online:
Jérôme Busca 1; Messoud Efendiev 2; S. Zelik 3
@article{CRMATH_2004__338_1_7_0, author = {J\'er\^ome Busca and Messoud Efendiev and S. Zelik}, title = {Classification of positive solutions of semilinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--11}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.10.038}, language = {en}, }
TY - JOUR AU - Jérôme Busca AU - Messoud Efendiev AU - S. Zelik TI - Classification of positive solutions of semilinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 7 EP - 11 VL - 338 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2003.10.038 LA - en ID - CRMATH_2004__338_1_7_0 ER -
Jérôme Busca; Messoud Efendiev; S. Zelik. Classification of positive solutions of semilinear elliptic equations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 7-11. doi : 10.1016/j.crma.2003.10.038. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.038/
[1] Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992
[2] Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1089-1111
[3] Further quantitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm Sup. Pisa Cl. Sci., Volume 25 (1998) no. 1–2, pp. 69-94
[4] H. Berestycki, M. Efendiev, S. Zelik, Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains, Preprint 01-11, Universitat Stuttgart, Mathematishes Institut, 2001
[5] Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345
[6] Qualitative properties of some bounded positive solutions to scalar field equations, Calc. Var. Partial Differential Equations, Volume 13 (2001) no. 2, pp. 191-211
[7] Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, Volume 163 (2000) no. 1, pp. 41-56
[8] Existence and non-existence results for semilinear elliptic problems in unbounded domains, Coll. Progress in PDE, Pitman Res. Notes, vol. 249, 1991, pp. 1-14
[9] Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 6 (1981), pp. 883-901
[10] Symmetry of positive solutions of nonlinear elliptic equations in , Math. Anal Appl. Part A, Academic Press, New York, 1981, pp. 369-402
[11] Uniqueness of positive solutions of Δu−u+up=0 in , Arch. Rational Mech. Anal., Volume 105 (1983), pp. 243-266
[12] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, 1988
[13] Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Nijhoff, Dordrecht, 1985
Cited by Sources:
Comments - Policy