A generalized infinite dimensional oscillatory integral with a polynomially growing phase function is defined and explicitly computed in terms of an absolutely convergent Gaussian integral. The results are applied to the Feynman path integral representation for the solution of the Schrödinger equation with an anharmonic oscillator potential.
Un concept d'intégrale oscillatoire généralisée en dimension infinie, avec une fonction de phase de croissance, polynomiale à l'infini, est introduit. L'intégrale est calculée explicitement en termes d'intégrales gaussiennes absolument convergentes. Les résultats sont appliqués à une representation de type « intégrale sur les chemins de Feynman » de la solution de l'équation de Schrödinger à potentiel anharmonique.
Accepted:
Published online:
Sergio Albeverio 1, 2; Sonia Mazzucchi 2
@article{CRMATH_2004__338_3_255_0, author = {Sergio Albeverio and Sonia Mazzucchi}, title = {Generalized infinite-dimensional {Fresnel} integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {255--259}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2003.11.022}, language = {en}, }
Sergio Albeverio; Sonia Mazzucchi. Generalized infinite-dimensional Fresnel integrals. Comptes Rendus. Mathématique, Volume 338 (2004) no. 3, pp. 255-259. doi : 10.1016/j.crma.2003.11.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.022/
[1] Finite-dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions, J. Funct. Anal., Volume 113 (1993) no. 1, pp. 177-244
[2] On the Schrödinger equation with potentials which are Laplace transform of measures, Potential Anal., Volume 9 (1998) no. 1, pp. 65-82
[3] Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics, Invent. Math., Volume 40 (1977) no. 1, pp. 59-106
[4] S. Albeverio, S. Mazzucchi, Generalized Fresnel integrals, SFB 611, Preprint No. 59, Bonn, 2003
[5] S. Albeverio, S. Mazzucchi, Feynman path integrals for polynomially growing potentials, Preprint of the University of Trento, 2003
[6] Feynman maps, Cameron–Martin formulae and anharmonic oscillators, Ann. Inst. H. Poincaré Phys. Théor., Volume 41 (1984) no. 2, pp. 115-142
[7] The Feynman Integral and Feynman's Operational Calculus, Oxford University Press, New York, 2000
[8] Feynman integrals for a class of exponentially growing potentials, J. Math. Phys., Volume 39 (1998) no. 9, pp. 4476-4491
Cited by Sources:
Comments - Policy